半导体激光器输出特性的影响因素
- 格式:doc
- 大小:546.50 KB
- 文档页数:10
半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。
由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。
从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。
关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。
As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。
半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
课题半导体激光器实验1.了解半导体激光器的基本工作原理,掌握其使用方法;教学目的 2.掌握半导体激光器耦合、准直等光路的调节;3.学会测量半导体激光器的输出特性和光谱特性。
重难点 1.激光器与光具组的共轴调节;2.输出特性的测量方法。
教学方法讲授、讨论、实验演示相结合。
学时 3个学时一、前言光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。
其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。
半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通讯,光计算机的发展。
二、实验原理1.半导体激光器的工作原理激光器一般包括三个部分。
(1 )激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
显然亚稳态能级的存在,对实现粒子数反转是非常有利的。
现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。
(2)激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。
一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。
各种激励方式被形象化地称为泵浦或抽运。
为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
(3) 谐振腔有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。
于是人们就想到了用光学谐振腔进行放大。
所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。
一块几乎全反射,一块大部分反射、少量透射出去,以使激光可透过这块镜子而射出。
半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。
2.测量半导体激光器的几个主要特性。
3.掌握半导体激光器性能的测试方法。
二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。
三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。
四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。
从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。
实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。
实验八半导体激光器的光学特性测试[实验目的]1、通过实验熟悉半导体激光器的光学特性。
2、掌握半导体激光器耦合、准直等光路的调节。
3、根据半导体激光器的光学特性考察其在光电子技术方面的应用。
[实验仪器]1、半导体激光器及可调电源2、光谱仪3、可旋转偏振片4、旋转台5、光功率计图1. 半导体激光器的结构[实验原理]1、半导体激光器的基本结构至今,大多数半导体激光器用的是GaAs或Ga1-x Al x As材料,p-n结激光器的基本结构如图1所示。
P—n结通常在n型衬底上生长p型层而形成。
在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面起镜面作用,为形成激光模提供必须的光反馈。
图1中的器件是分立的激光器结构,它可以与光纤传输线连接,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光路。
2、半导体激光器的阈值条件:当半导体激光器加正向偏置并导通时,器件不会立即出现激光振荡。
小电流时发射光大都来自自发辐射,光谱线宽在数百唉数量级。
随着激励电流的增大,结区大量粒子数反转,发射更多的光子。
当电流超过阈值时,会出现从非受激发射到受激发射的突变。
实际上能够 观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示;这是由于激光作用过程的本身具有较高量子效率的缘故。
从定量分析,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒)正好等于由散射、吸收激光器的发射所损耗的光子数(每秒)。
据此,可将阈值电流作为各种材料和结构参数的函数导出一个表达式:)]1(121[8202Rn a Den J Q th +∆=ληγπ (1) 这里,Q η是内量子效率,O λ是发射光的真空波长,n 是折射率,γ∆是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度,α是行波的损耗系数,L 是腔长,R 为功率反射系数。
半导体激光器的热反转
半导体激光器的热反转(Thermal Reversal)是指在激光器工作时,由于温度的变化导致激光器内部的光学性质发生改变,从而影响激光的输出特性。
这种现象在高功率半导体激光器中尤为显著,因为它们在工作时会产生大量的热量,导致激光器芯片的温度升高。
热反转的主要表现包括:
1.波长漂移:随着温度的升高,激光器的发射波长会向长波长方向漂移,这通常被称为“红移”。
这是因为激光器内部的折射率会随着温度的变化而变化,从而改变了激光器内部的谐振条件。
2.功率下降:温度升高还可能导致激光器的输出功率下降,因为高温会增加激光器内部的损耗,减少有效的激光输出。
3.阈值电流上升:热效应还可能导致激光器的阈值电流上升,这意味着需要更多的电流才能启动激光器的正常工作。
4.效率降低:随着温度的升高,激光器的转换效率可能会降低,因为热量的产生会导致更多的能量损失。
为了减少热反转对半导体激光器性能的影响,通常会采取以下措施:
热管理:设计有效的散热系统,如使用散热片、热沉或
液冷系统,以控制激光器的工作温度。
热隔离:在激光器芯片和封装之间使用热隔离材料,以减少热量从芯片传递到封装。
温度控制:使用温度传感器和控制系统来监控和调节激光器的工作温度,以保持其稳定运行。
热设计优化:优化激光器的热设计,如使用热传导性好的材料、改善热路径设计等,以减少热量的积累。
热反转是高功率半导体激光器设计和应用中需要特别注意的问题,通过合理的热管理措施可以有效地提高激光器的性能和可靠性。
光信息专业实验指导材料(试用)实验5-1 半导体激光器的特性测试[实验目的]1、通过测量半导体激光器工作时的功率、电压、电流,画出P-V、P-I、I-V曲线,让学生了解半导体的工作特性曲线;2、学会通过曲线计算半导体激光器的阈值,以及功率效率,外量子效率和外微分效率,并对三者进行比较;3、内置四套方波信号或者外加信号直接调制激光器,通过调整不同的静态工作点,和输入信号强度大小不同,观察到截至区,线性区,限流区的信号不同响应(信号畸变,线性无畸变),了解调制工作原理。
[实验仪器]实验室提供:半导体激光器实验箱(内置三个半导体激光器),示波器,两根电缆线。
[实验原理]半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。
一、半导体激光器的结构与工作原理1.半导体激光器的工作原理。
半导体材料多是晶体结构。
当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。
价电子所处的能带称价带(对应较低能量)。
与价带对应的高能带称导带,价带与导带之间的空域称为禁带。
当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。
同时,价带中失掉一个电子,相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。
因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。
没有杂质的纯净半导体,称为本征半导体。
如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。
常用光纤器件特性测试实验 实验一 半导体激光器P-I 特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P 〔平均发送光功率〕-I 〔注入电流〕曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I 关系曲线。
2、根据P -I 特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。
三、预备知识1、光源的种类2、半导体激光器的特性、内部结构、发光原理四、实验仪器1、ZY12OF13BG3型光纤通信原理实验箱 1台2、FC 接口光功率计 1台3、FC/PC-FC/PC 单模光跳线 1根4、万用表 1台5、连接导线20根五、实验原理半导体激光二极管〔LD 〕或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率一样,而且相位、偏振方向和传播方向都一样,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率〔≥10mW 〕辐射,而且输出光发散角窄〔垂直发散角为30~50°,水平发散角为0~30°〕,与单模光纤的耦合效率高〔约30%~50%〕,辐射光谱线窄〔Δλnm 〕,适用于高比特工作,载流子复合寿命短,能进展高速信号〔>20GHz 〕直接调制,非常适合于作高速长距离光纤通信系统的光源。
阈值电流是非常重要的特性参数。
图1-1上A 段与B 段的交点表示开始发射激光,它对应的电流就是阈值电流th I 。
半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
将开始出现净增益的条件称为阈值条件。
半导体激光器输出特性的影响因素
半导体激光器输出特性的影响因素
半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。
下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。
1. 波长
半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。
hf = Eg f (Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s , h=6.628×10−34 J ·s ,leV=1.60×10−19 J
得
决定半导体激光器输出光波长的主要因素是半导体材料和温度。
λ
c =f ) ( )(24.1m eV Eg μλ=
不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85 μm 波段, InGaAsP-InP 材料适用于
1.3~1.55 μm 波段。
温度的升高会使半导体的禁带宽度变小,导致波长变大。
2. 光功率
半导体激光器的输出光功率
其中I 为激光器的驱动电流,P th 为激光器的阈值
功率;I th 为激光器的阈值电流;ηd 为外微分量
子效率;hf 为光子能量;e 为电子电荷。
hf 、e 为常数,Pth 很小可忽略。
由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。
驱动电流是可随意调节
的,因此这里主要讨论后两者。
除此之外,温度也是影响光功率的重要因素。
1)阈值电流
半导体激光器的输出光功率通常用P-I 曲线
)
(th d th I I e hf
P P -+=η
表示。
当外加正向电流达到某一数值时,输出光功率急剧增加,这时将产生激光振荡,这个电流称为阈值电流,用I th表示。
当激励电流I< I th时,有源区无法达到粒子数反转,也无法达到谐振条件,以自发辐射为主,输出功率很小,发出的是荧光;当激励电流I> I th时,有源区不仅有粒子数反转,而且达到了谐振条件,受激辐射为主,输出功率急剧增加,发出的是激光,此时P-I曲线是线性变化的。
对于激光器来说,要求阈值电流越小越好。
阈值电流主要与下列影响因素有关:
a)晶体的掺杂浓度越大,阈值电流越小。
b) 谐振腔的损耗越小,阈值电流越小。
c) 与半导体材料结型有关,异质结阈值电流比同质结小得多。
d) 温度越高,阈值电流越大。
2)外微分量子效率
外微分量子效率ηd 定义为激光器达到阈值
后,输出光子数的增量与注入电子数的增量之比,其表达式为
外微分量子效率代表了半导体激光器的电——光转换效率,它与内量子效率、载流子对有源区的注入效率、光在谐振腔内的损耗情况、谐振腔端面的反射系数和温度等因素有关。
它对应着P-I 曲线线性部分的斜率。
3)温度
半导体激光器对温度很敏感,其输出功率随温度变化而变化。
th th th th d /)(/)(I I P P e I I hf P P --=--=η
温度变化将改变激光器的输出光功率,有两个原因:
一是激光器的阈值电流随温度升高而增大。
温度对阈值电流的影响,可用下式描述:
式中,I 0表示室温下的阈值电流,T 表示温度,T 0
称为特征温度(表示激光器对温度的敏感程度)。
一般InGaAsP 的激光器,T 0
=50~80K ;A1GaAs/GaAs 的激光器, T 0
=100~150K 。
二是外微分量子效率随温度升高而减小。
如GaAs 激光器,绝对温度77K 时,ηd 约为50%;
/0T T th e I I
当绝对温度升高到300K时, ηd只有约30%。
3.光谱
半导体激光器的光谱随着驱动电流的变化而变化。
当驱动电流I<阈值电流I th时,发出的是荧光,光谱很宽,如图(a)所示。
当I>I th后,发射光谱突然变窄,谱线中心强度急剧增加,表明发出激光,如图(b)所示。
当驱动电流达到阈值后,随着驱动电流的增大,纵模模数变小,谱线宽度变窄。
当驱动电流足够大时,多纵模变为单纵模。
此外,温度也会影响半导体激光器的光谱。
随着温度的升高,半导体的禁带宽度变小,将导致整个光谱向长波长方向移动。
4.激光束的空间分布
激光束的空间分布用近场和远场来描述。
近场是指激光器反射镜面上的光强分布,远场是指离反射镜面一定距离处的光强分布。
近场和远场是由谐振腔(有源区)的横向尺寸,即平行于PN结平面的宽度w和垂直于PN结平面的厚度t 所决定的,并称为激光器的横模。
平行于结平面的谐振腔宽度w 由宽变窄,场图呈现出由多横模变为单横模;垂直于结平面的谐振腔厚度t 很薄,这个方向的场图总是单横模。
下图为典型半导体激光器的远场辐射特性,图中θ‖和θ⊥分别为平行于结平面和垂直于结平面的辐射角,整个光束的横截面呈椭圆形。