甲烷化技术
- 格式:ppt
- 大小:877.50 KB
- 文档页数:28
生物甲烷化技术及其应用前景甲烷是一种广泛存在于自然界中的气体,其在工农业生产和生活中有广泛的应用,然而,甲烷的释放对环境和人类健康造成了巨大的威胁。
因此,如何有效地控制和利用甲烷成为目前研究的重点之一,而生物甲烷化技术的出现为解决这一问题提供了一种新途径。
什么是生物甲烷化技术?生物甲烷化技术是利用微生物对有机废弃物等物质进行生物分解和发酵产生甲烷的一种技术。
主要有两种方式,即甲烷发酵和沼气发酵。
甲烷发酵是一种同气相反的化学反应,也称为反甲烷发酵。
在此过程中,甲烷氧化菌对甲烷进行氧化,产生二氧化碳、水和能量。
这种技术可用于处理含甲烷废气和液体废物。
沼气发酵是指在不氧环境下,利用多种微生物群对生物质进行分解和发酵,产生沼气的过程。
沼气主要由甲烷、二氧化碳等组成,可以用作燃料,也可作为肥料使用。
应用前景生物甲烷化技术的应用前景巨大。
它可以处理多种有机废物,如农业废物、畜禽粪便、厨余垃圾等。
同时,这种技术还可以为生物质能源的开发提供新的途径,而生物质能源的开发则对替代传统化石能源具有重要意义。
农业废物是一种重要的有机废弃物,成堆的秸秆随处可见。
然而,以往的处理方式并不是很有效,大量秸秆直接堆放在田间地头,长期露天存放容易导致火灾、占用土地等问题。
而生物甲烷化技术可以将废弃物转化为能源和肥料,缓解了农业废物处理和土地资源的压力。
与此同时,畜禽粪便也是一种重要的有机废弃物。
传统的排污处理方式通常采用化学除臭和厌氧消化等方法,但这些方法不够环保,同时产生的气体也难以处理。
通过生物甲烷化技术,可以将畜禽粪便转化为沼气和有机肥料,既解决了废弃物的处理问题,也提供了新的能源来源和农业肥料。
厨余垃圾也是一种常见的有机废弃物,通过生物甲烷化技术转化为沼气,则可以在城市中极大地缓解垃圾处理问题,同时解决城市能源需求的问题。
结语随着人们环保意识的不断提高,生物甲烷化技术将得到更广泛的应用。
在环保和能源问题日益突出的今天,生物甲烷化技术无疑是一种极有前景的技术,它可以有效地解决废弃物资源化的问题,同时也为能源的开发提供了新思路和新途径。
甲烷化技术¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。
煤制天然气的原理就是合成气的甲烷化反应,其化学方程式如下:一氧化碳和氢反应:CO +3H2 =CH4 +H2O △H= -206.2kJ/mol反应生成的水与一氧化碳发生作用CO +H2O =CO2 +H2 △H= -38.4kJ/mol二氧化碳与氢作用:CO2 +4H2 =CH4 +2H2O △H =-165.0kJ/mol以上反应体系为强放热、快速率的自平衡反应,温度升高到一定程度后反应速率快速下降且向相反方向(左)进行。
另外甲烷化的过程属于体积缩小的反应,增加反应压力,一方面有利于提高反应速率,另一方面有助于推动反应向甲烷合成向进行,增加压力可以在很大程度上减小装置体积,提高装置产能。
甲烷化反应为强放热反应,每转化1%的CO,体系绝热升温约72℃,因此煤制天然气工艺要解决一氧化碳转化率和反应热的转移问题。
该过程中发生的副反应:一氧化碳的分解反应:2CO =CO2 +C △H= -173.3kJ/mol沉积碳的加氢反应C +2H2 =CH4 △H = -84.3kJ/mol该反应在甲烷合成温度下,达到平衡是很慢的。
当有碳的沉积产生时催化剂失活。
反应器出口气体混合物的热力学平衡,决定于原料气的组成、压力和温度。
目前,甲烷化技术已经用在大规模的合成气制天然气上,最大的问题是催化剂的耐温和强放热反应器的设计制作上。
甲烷化工艺有两步法和一步法两种类型。
关于甲烷化技术的认识根据收集到的资料,本文拟从甲烷化技术的原理、技术现状、对比及甲烷化技术在煤制天然气中的能耗占比等方面进行总结。
一、甲烷化技术的原理1、技术原理所谓甲烷化,是指合成气中CO、CO2和H2在一定的温度、压力及催化剂作用下,进行化学反应生成CH4的过程。
其反应方程式如下所示:CO+3H2=CH4+H2O+206.2 KJ/molCO2+4H2=CH4+2H2O+165KJ/mol因此,甲烷化过程是一个体积减小的强放热可逆反应,放热效应比甲醇合成更大(甲醇合成的放热分别为90.8KJ/mol和58.6KJ/mol)。
因此,甲烷化技术的关键在于以下两点:1)反应热的控制及回收;2)催化剂的性能及保护。
2、现有甲烷化技术2.1 技术概况现有甲烷化技术大致分为以下三大类,其技术特点如下表1所示:表1:甲烷化技术特点2.2 技术对比表1从上到下,技术越来越先进,能耗越来越低,但对催化剂、工艺、设备制造等的要求越来越高。
以合成气制天然气来说,目前仅绝热多段循环技术实现大型工业化运行,且均为国外技术,如Davy,拓普索、Lurgi,国内技术目前尚无大型工业化运行装置,仅在绝热多段循环技术与绝热多段无循环技术上完成了投料千标方/h规模的中试,分别为:西南化工研究院技术与华福联合体技术。
2.2.1 西南化工研究院技术2014年12月30日,由西南化工研究院与中海油气电集团合作研发的“煤制天然气甲烷化中试技术”,通过了中国石油和化学工业联合会组织的成果鉴定。
达到世界领先水平的该技术,具有低循环比甲烷化工艺、高性能甲烷化催化剂等优势,可生产高质量、低成本的合成天然气,并具备工业化条件。
2009年以来,煤制天然气甲烷化工艺技术及催化剂研究,先后完成350标准立方米/小时煤制天然气甲烷化模试;启动国内规模最大的2000标准立方米/小时煤制天然气甲烷化全流程1200小时中试试验,通过72小时满负荷连续运行考核;完成4000小时甲烷化催化剂寿命试验,建成了催化剂工业生产装置,以工业原料生产出了合格的催化剂产品。
第50卷第3期2021年3月应用化工AppOoed ChemocaOIndusieyVoO.50No.3Mae.2021甲烷化技术的研究进展刘玉玺1,卿山s赵明2,梁俊宇2(1-昆明理工大学冶金与能源学院,云南昆明650093;2-云南电网有限责任公司电力科学研究院,云南昆明650051)摘要:甲烷化技术是从煤、焦炉气、电能等原料制取天然气的关键技术,有着重要的研究和实用价值%主要介绍了国内外甲烷化技术的发展概况,分析并比较了各项技术的工艺流程及其特点;对不同类型的甲烷化反应器以及操作工况对反应器影响的相关研究做了分析和总结;对甲烷化工艺关键技术问题进行讨论。
以期能为今后我国开展电转天然气过程中甲烷化技术的研究提供参考。
关键词:甲烷化;合成天然气;电转气;甲烷化反应器中图分类号:TQ221.11文献标识码:A文章编号:1671-3206(2021)03-0754-05Research progress of mettanation technologyLIU Yu-xi1,QING Shan1,ZHA0Ming2,LIANG Jun-yu(1.FacuOiyoaMeia O uegocaOand EneegyEngoneeeong,KunmongUnoaeesoiyoaScoenceand TechnoOogy,Kunming650093,China;2.Electric Power Research Institute,Yunnan Power Grid Co.,Lth.,Kunming650051,China)Abstract:Methanation technoOgy is a k—technoOgy to produce synthetic natural gas from coat,coke oa-en ga5,eOecieoceneegyand oiheeeawmaieeoaO,whoch ha5ompoeianiee5eaech and peaciocaOaaOue.Thoae--cte mainly introduces the development of methanation technoOgy a-home and abroad,analyzes and com-paee5ihepeoce5aOowand chaeacieeoioc5oaaaeoou5iechnoOogoe5,anaOyoe5and5ummaeooe5iheeeOaied ee-sexrch on dbferent types of methanation reactors and the influence of operating conditions on reactors,and discusses the k—technical problems of methanation process.It is expected to provide a reference for the research of methanation technoOgy b the process of power to synthetic nature gas in China in the future. Key words:methanation;synthetic nature gas;power-to-fas;methanation reactor天然气是一种清洁能源,使用安全性高,对环境的污染小,对我国大幅削减C02等温室气体排放具有重要价值%由于能源资源禀赋呈现“富煤、缺油、少气”的特点,我国一直在积极研究煤制天然气、焦炉气甲烷化以及电转甲烷储能等甲烷化工艺技术,提升天然气自我供给能力%其中,电转天然气技术(power-to-gas)是解决太阳能、风能发电波动性、随机性的有效方法,也是一种消纳电力系统富余电量的有效方法%我国三北地区风力、太阳能资源丰富,西南地区的水力资源充足,电转气技术可以充分利用富余的可再生电力,提供跨季节的存储能力和稳定的能源供应,具有良好发展前景%1甲烷化反应原理甲烷化技术就是利用催化剂使CO、CO2与H2进行反应,最终转化为CH4的工艺技术⑴。
煤制天然气-甲烷化1. 简介煤制天然气(Coal-to-Natural-Gas,简称CTG)是一种将煤炭转化为天然气的技术,主要过程是甲烷化,即将煤炭中的有机化合物转化为甲烷气体。
煤制天然气是一项重要的能源转化技术,可以将煤炭资源转化为更清洁的天然气,从而减少对传统石油和天然气资源的依赖。
2. 煤制天然气的步骤煤制天然气的主要步骤包括煤气化和甲烷化两个过程。
2.1 煤气化煤气化是指将煤炭在高温和高压条件下,在缺氧或有限氧气条件下进行化学反应,使煤炭转化为合成气。
合成气由一氧化碳(CO)、二氧化碳(CO2)和氢气(H2)组成,其中一氧化碳和氢气是后续甲烷化反应的主要原料。
2.2 甲烷化甲烷化是将合成气转化为甲烷气体的过程。
在高温和催化剂的作用下,合成气中的一氧化碳和氢气发生反应生成甲烷气体。
甲烷气体是主要成分,其含量通常达到90%以上,可以直接作为燃料供应给城市燃气系统或工业领域使用。
3. 煤制天然气的优势和挑战3.1 优势•利用煤炭资源:煤炭是一种丰富的能源资源,通过煤制天然气技术可以有效利用这些资源,减缓传统石油和天然气的供需矛盾。
•降低碳排放:相比燃烧煤炭产生的二氧化碳排放,煤制天然气技术可以显著降低碳排放量,对环境更加友好。
•提高能源利用效率:煤制天然气技术可以实现高效能源利用,将煤炭中的有机物质转化为更高价值的甲烷气体。
3.2 挑战•能源转化效率:煤制天然气技术在转化过程中会产生一定的能量损失,需要进一步提高转化效率,减少能源浪费。
•环境影响:煤制天然气过程中会产生一定的副产物和废弃物,对环境造成一定的影响和压力,需要合理处理和减少环境污染。
•经济可行性:煤制天然气技术的投资和运营成本较高,需要找到经济上可行的路径和模式,以实现可持续发展。
4. 煤制天然气在全球的应用和发展煤制天然气技术在许多国家得到了广泛应用和快速发展。
其中,中国是全球最大的煤制天然气生产国之一。
中国在煤制天然气领域进行了大规模的投资和研发,建设了多个煤制天然气项目。
煤制SNG工艺流程中主要包括煤气化、变换、酸性气体脱除、甲烷化等工艺技术,其中高甲烷化技术为关键技术之一。
1.托普索甲烷化技术丹麦托普索公司开发甲烷化技术可以追溯至20世纪 70年代后期,该公司开发的甲烷化循环工艺(TREMPTM)技术具有丰富的操作经验和实质性工艺验证,保证了这一技术能够用于商业化。
该工艺已经在半商业规模的不同装置中得到证明,在真实工业状态下生产200 m3/h~3000 m3/h的SNG。
在TREMPTM工艺中,反应在绝热条件下进行。
反应产生的热量导致了很高的提升,通过循环来控制第一甲烷化反应器的度。
TREMPTM工艺一般有三个反应器,第二和第三绝热反应器可用一个沸水反应器(BWR)代替,虽投资较高,但能够解决空间有限问题。
另外,在有些情况下,采用四个绝热反应器是一种优化选择,而在有些条件下,使用一个喷射器代替循环压缩机。
除了核心技术外,因为生产甲烷的过程要放出大量的热量,如何利用和回收甲烷化热量是这项技术的关键。
托普索工艺可以将这些热量再次利用,在生产天然气的同时,产出高压过热蒸汽。
托普索的甲烷化催化剂和合成氨的催化剂在主要成分上没有差别,Ni类催化剂负载于Al2O3上是肯定的,同时要加防积碳的助剂,另外就是要使催化剂在高温下依然有活性,又需要加适量的助剂。
在工艺上,一般会加有循环机,至少要多个反应器。
对甲烷化反应产生的大量热如何利用也是工艺上一个重要的组成部分2.Davy甲烷化技术20世纪90年代末期,Davy工艺技术公司获得了将CRG技术对外转让许可的专有权,并进一步开发了 CRG技术和最新版催化剂。
Davy甲烷化工艺技术除具有托普索TREMPTM工艺可产出高压过热蒸汽和高品质天然气特点外,还具有如下特点:催化剂已经过工业化验证,拥有美国大平原等很多业绩。
催化剂具有变换功能,合成气不需要调节H/C比,转化率高。
催化剂使用范围很宽,在230℃~700℃范围内都具有很高且稳定的活性。
甲烷化生产关键技术甲烷是一种非常重要的天然气,被广泛用于燃气发电、民用燃气、工业燃料、交通运输等领域。
甲烷化生产是指通过催化剂将CO2等废气和H2制备成甲烷,是一种重要的清洁能源技术。
其关键技术包括催化剂开发、反应器设计、反应机理研究和工艺参数控制等方面。
催化剂开发是甲烷化生产的关键技术之一。
目前,主要采用镍基和铁基催化剂。
其中,镍基催化剂性能稳定,但对氧化还原能力弱;而铁基催化剂具有较强的氧化还原能力,但反应活性较低。
因此,研发具有高反应活性、高选择性、长寿命的催化剂是提高甲烷化生产效率的关键。
此外,催化剂的载体选择、寿命测试和再生等技术也需要不断探索和创新。
反应器设计也是影响甲烷化生产效率的关键技术之一。
目前,主要采用固定床反应器、流化床反应器和筒式反应器等不同类型的反应器。
其中,固定床反应器反应稳定性好、生产能力大,但存在催化剂失效、堵塞等问题;流化床反应器反应条件温度均匀、催化剂利用率高,但操作复杂、能耗高;筒式反应器则将两者的优点结合起来,但需要注重反应器设计和运行管制。
反应机理研究是深入了解甲烷化生产过程的关键技术之一。
目前,学界还没有完全解析甲烷化反应的机理,需要加强对反应路径、活性中心等方面的研究。
理论计算、表征技术等手段也需要不断发展和改进。
通过深入理解反应机理,能够更好的指导催化剂的设计和工艺参数的控制。
工艺参数控制是甲烷化生产过程的关键技术之一。
主要包括反应温度、压力、H2/CO2含量、催化剂负载量等要素的掌控。
在实际生产过程中,应根据催化剂性质和工艺要求,确定合理的工艺参数,以提高甲烷产率、选择性和催化剂寿命。
此外,对于甲烷化生产中出现的问题,如催化剂堵塞、热力失衡等,应及时调整相关工艺参数,并建立完善的监测体系,以保证生产的连续性、稳定性和可持续性。
综上所述,甲烷化生产是一项非常重要的清洁能源技术,其关键技术包括催化剂开发、反应器设计、反应机理研究和工艺参数控制等方面。