诱导公式大全
- 格式:docx
- 大小:25.62 KB
- 文档页数:2
诱导公式1诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。
“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。
高中数学诱导公式大全常用的诱导公式有以下几组:;公式一:;设α为任意角,终边相同的角的同一三角函数的值相等;sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cosα(k∈Z);tan(2kπ+α)=tanα(k∈Z);cot(2kπ+α)=cotα(k∈Z);公式二:;设α为任意角,π+α的三角函数值与α的三角函数值;sin(π+α)=-sinα;cos(π+α常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考数学诱导公式大全常用的诱导公式有以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sin (kZ)cos(2k+)=cos (kZ)tan(2k+)=tan (kZ)cot(2k+)=cot (kZ)公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin(+)=-sincos(+)=-costan(+)=tancot(+)=cot公式三:任意角与-的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三能够得到与的三角函数值之间的关系:sin(-)=sincos(-)=-costan(-)=-tancot(-)=-cot公式五:利用公式一和公式三能够得到2与的三角函数值之间的关系:sin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式经历口诀※规律总结※上面这些诱导公式能够概括为:关于/2*k (kZ)的三角函数值,①当k是偶数时,得到的同名函数值,即函数名不改变;②当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,c ottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。
高中知识点复习:高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式总结大全-CAL-FENGHAI.-(YICAI)-Company One1诱导公式1诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=c osαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。
“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
诱导公式一设a 为任意角,终边相同的角的同一三角函数的值相等:sin (2k 计 a) = sin acos (2k 计 oO = cos atan (2k 计 a) = tan acot (2k 计 a) = cot a公式二设a 为任意角,兀+厕三角函数值与a 的三角函数值之间的关系: sin 〔兀+a 〕 cos 〔兀+ a 〕 tan 〔兀+ a 〕=-sin a =-cos a=tan a=cot a 公式三任意角a 与-a 的三角函数值之间的关系:sin (-a) = -sin acos (- a) = cos atan (-a) = -tan a cot (- a) = -cot a公式四利用公式二和公式三可以得到 危a 与a 的三角函数值之间的关系: sin 3 a 〕= cos 〔 E 〕= tan 〔 Ti-a 〕= sin a=-cos a=-tan a:-cot a公式五利用公式-和公式三可以得到2:t-a 与a 的三角函数值之间的关系: sin 〔2 危a 〕 cos 〔2 估 a 〕 tan 〔2 Ti-a 〕 cot =-sin a =cos a=-tan a=-cot a公式六… 土两邠三角函数值之间的关系:3Tsin ( 2 + a) = coscos ( — + oO = -sin tan ( — + oO = -cot a cot ( — + a) = -tan a sin ( —- a) = cos a cos ( 2 - a) = sin a tan ( —-(X)= cot a cot ( —-a) = tan a. / 3二.、sin ( — + a) = -cos a/ 3-"、.cos ( ; + a) = sin a./ 3- .、,tan ( 2 + a) = -cot a cot ( — + a) = -tan a.,3二、sin ( — - a) = -cos az 3-、.cos (云-a) = -sin a./ 3二、,tan ( — -a) = cot a,/ 3二、,cot ( 2 - a) = tan a(以上k€ Z)。
e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系 tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
高中数学诱导公式大全概述诱导公式是数学三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数。
诱导公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-ta nαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式大全诱导公式是数学中的一个重要概念,它可以帮助我们简化复杂的表达式,解决各种数学问题。
在本文中,我们将为大家详细介绍各种常见的诱导公式,希望能够帮助大家更好地理解和运用这些公式。
一、三角函数的诱导公式。
1. sin(A ± B) = sinAcosB ± cosAsinB。
2. cos(A ± B) = cosAcosB ∓ sinAsinB。
3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。
这些诱导公式可以帮助我们简化三角函数的加减运算,特别是在解决三角函数的复合运算问题时,能够起到很大的作用。
二、指数函数的诱导公式。
1. e^x ± e^(-x) = 2coshx。
2. e^x ∓ e^(-x) = 2sinhx。
3. (e^x + e^(-x)) / 2 = coshx。
4. (e^x e^(-x)) / 2 = sinhx。
这些诱导公式是指数函数的一些常见运算公式,通过这些公式,我们可以将指数函数的运算转化为双曲函数的运算,从而简化计算过程。
三、对数函数的诱导公式。
1. ln(xy) = ln x + ln y。
2. ln(x/y) = ln x ln y。
3. ln(x^n) = nlnx。
对数函数的诱导公式主要是针对对数的乘除运算和指数的换底运算,这些公式在解决对数函数的复合运算问题时非常有用。
四、微积分中的诱导公式。
1. (x^n)' = nx^(n-1)。
2. (e^x)' = e^x。
3. (lnx)' = 1/x。
4. (sinx)' = cosx。
5. (cosx)' = -sinx。
6. (tanx)' = sec^2x。
这些微积分中的诱导公式是我们在求导过程中经常会用到的公式,通过这些公式,我们可以快速求得各种函数的导数,解决各种微积分问题。
三角函数诱导公式大全(1).正弦定理:a²=b²+c²–2bc·cosAb²=a²+c²–2ac·cosBc²=a²+b²–2ab·cosC(2).余弦定理:a/cosA=b/cosB=c/cosC(3).正切定理:a·tanA=b·tanB=c·tanC(4).正弦函数诱导公式:sin(A+B)=sinA·cosB+cosA·sinBsin(A-B)=sinA·cosB-cosA·sinBsin(2A)=2sinA·cosAsin(-A)=-sinAcos(A+B)=cosA·cosB-sinA·sinBcos(A-B)=cosA·cosB+sinA·sinBcos(2A)=cos²A-sin²Acos(-A)=cosA(5).余弦函数诱导公式:cos(A+B)=cosA·cosB-sinA·sinBcos(A-B)=cosA·cosB+sinA·sinBcos(2A)=cos²A-sin²Acos(-A)=cosAsin(A+B)=sinA·cosB+cosA·sinBsin(A-B)=sinA·cosB-cosA·sinBsi n(2A)=2sinA·cosAsin(-A)=-sinA(6).正切函数诱导公式:tan(A+B)= (tanA+tanB)(1–tanA·tanB) tan(A-B)= (tanA–tanB)(1+tanA·tanB) tan(2A)=2tanA/(1–tan²A)tan(-A)=-tanA(7).反正弦函数诱导公式:arcsinX=arcsinpx+2nπarccosX=π/2+arcsinpx+2nπarctanX=arctanpx+2nπ(8).反余弦函数诱导公式:arcsinX=π/2-arccosXarccosX=arccospx+2nπarctanX=π/2+arccospx+2nπ(9).反正切函数诱导公式:arcsinX=arctanX+2nπarccosX=π/2-arctanX+2nπarctanX=arctanpx+2nπ(10).双曲正弦函数诱导公式:sinhA=sinhpA+2nπcoshA=coshpA+2nπtanhA=tanhpA+2nπ(11).反双曲正弦函数诱导公式:arcsinhX=arcsinhpX+2nπarccoshX=arccoshpX+2nπ。
诱导公式1所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。
公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二: 设α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三: 任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一与公式三可以得到2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α得三角函数值之间得关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号瞧象限。
“奇、偶”指得就是整数n得奇偶,“变与不变”指得就是三角函数得名称得变化:“变”就是指正弦变余弦,正切变余切。
(反之亦然成立)“符号瞧象限”得含义就是:把角α瞧做锐角,不考虑α角所在象限,瞧n·(π/2)±α就是第几象限角,从而得到等式右边就是正号还就是负号。
一全正;二正弦;三两切;四余弦这十二字口诀得意思就就是说: 第一象限内任何一个角得四种三角函数值都就是“+”; 第二象限内只有正弦就是“+”,其余全部就是“-”; 第三象限内只有正切与余切就是“+”,其余全部就是“-”; 第四象限内只有余弦就是“+”,其余全部就是“-”。
诱导公式大全在数学学科中,诱导公式是一种非常重要的工具,它能够帮助我们简化复杂的数学问题,使得计算更加高效和便捷。
本文将为大家介绍一些常见的诱导公式,希望能够对大家的学习和工作有所帮助。
一、三角函数的诱导公式。
1. 余弦函数的诱导公式。
余弦函数的诱导公式是,$\sin'(x) = \cos(x)$。
这个公式可以帮助我们在求解余弦函数的导数时更加方便快捷。
2. 正弦函数的诱导公式。
正弦函数的诱导公式是,$\cos'(x) = -\sin(x)$。
利用这个公式,我们可以更加轻松地求解正弦函数的导数。
3. 切线函数的诱导公式。
切线函数的诱导公式是,$\tan'(x) = \sec^2(x)$。
这个公式在求解切线函数的导数时非常有用。
二、指数函数的诱导公式。
1. 指数函数的诱导公式。
指数函数的诱导公式是,$(a^x)' = a^x \ln(a)$。
通过这个公式,我们可以更加简单地求解指数函数的导数。
2. 对数函数的诱导公式。
对数函数的诱导公式是,$(\log_a(x))' = \frac{1}{x \ln(a)}$。
这个公式可以帮助我们求解对数函数的导数,提高计算效率。
三、常见函数的诱导公式。
1. 幂函数的诱导公式。
幂函数的诱导公式是,$(x^n)' = nx^{n-1}$。
这个公式可以帮助我们求解幂函数的导数,简化计算过程。
2. 三角函数复合函数的诱导公式。
三角函数复合函数的诱导公式是,$(f(g(x)))' = f'(g(x)) \cdot g'(x)$。
通过这个公式,我们可以更加方便地求解三角函数复合函数的导数。
四、其他常用诱导公式。
1. 反常函数的诱导公式。
反常函数的诱导公式是,$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$。
这个公式在求解反常函数的导数时非常有用。
2. 参数方程的诱导公式。
诱导公式总结大全TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】诱导公式1所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。
“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。