2019中考数学一轮复习单元检测试卷
- 格式:doc
- 大小:467.55 KB
- 文档页数:21
2019中考数学数学一轮复习单元检测试卷第一单元有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2019的相反数是()A.﹣2019B.﹣C.2019D.2.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个3.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元4.下列计算正确的是()A.﹣(﹣3)=﹣3B.﹣|﹣3|=﹣3C.﹣(+3)=3D.﹣|﹣3|=35.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1B.5C.6D.86.下列计算正确的是()A.﹣6+4=﹣10B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8D.4﹣(﹣4)=07.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450D.2!8.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大9.定义一种新运算:a ※b=,则2※3﹣4※3的值( )A .5B .8C .7D .610.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是63,则m 的值是( ) A .5 B .6C .7D .8二、填空题(本大题共4小题,每小题5分,共20分)11.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破220000000000元,将数字220000000000用科学记数法表示为 . 12.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差 千克.13.p 在数轴上的位置如图所示,化简:|p +1|﹣|p ﹣2|= .14.若x 与y 互为相反数,m 是绝对值最小的数,则2019x +2019y +m = .三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27). (2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣3.4,﹣21,π,,3.7,15%; 正数集合:{ …}, 负整数集合:{ …}, 分数集合:{ …} 非正数集合:{ …}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为0.5升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地?为什么?20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.选择题(共10小题)1.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.3.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.4.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.5.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣0.5,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.6.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣1.3﹣(﹣2.1)=﹣1.3+2.1=0.8,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.7.【解答】解:==50×49=2450故选:C.8.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.9.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.10.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.二.填空题(共4小题)11.【解答】解:将220000000000用科学记数法表示为:2.2×1011.故答案为:2.2×1011.12.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.13.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.14.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,3.7,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣3.4,,3.7,15%…}非正数集合:{﹣2,﹣2,0,﹣3.4,﹣21…}故答案为:5,π,,3.7,15%,﹣2,﹣21,﹣2,﹣3.4,,3.7,15%,﹣2,﹣2,0,﹣3.4,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×0.5=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:。
2019-2020中考数学一轮总复习(圆)测试含答案一、选择题(本大题有6小题,第6小题选做一题,每小题3分,共18分)1、下列命题中,真命题的个数是( )①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个 B.2个 C.3个 D.4个2、如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=( )A.5 B.7 C.9 D.113、如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=( )A.64° B.58° C.72° D.55°4、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( )A.20° B.25° C.40° D.50°5、如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm6~A、如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是( )A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π6~B、如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(本大题有6小题,第12小题选做一题,每小题3分,共18分)7、如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB= 度.8、一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为 cm.9、如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .10、.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 .11、如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C= 度.12~A、如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .12~B、如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为 .三、本大题有5小题,每小题6分,共30分13、如图,A,B,C是⊙O上三点,∠ACB=25°,求∠BAO的度数..14、已知圆的半径是2,求该圆的内接正六边形的面积.∆ABC15、如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,求☉C的半径.16、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,求的长17、如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,求∠ADP 的度数.四、本大题有3小题,每小题8分,共24分18、如图,在△ABC 中,以BC 为直径的圆交AC 于点D ,∠ABD=∠ACB.(1)求证:AB 是圆的切线;(2)若点E 是BC 上一点,已知BE =4 ,tan∠AEB=,AB∶BC=2∶3,求圆的直径.5319、如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE⊥AF,垂足为点E(1)求证:DE=AB ;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)20、正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.五、本大题2小题,第小题9分,共18分21、如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.22、如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;并说明理由②连接OD,OE,当∠A的度数为 时,四边形ODME是菱形.说明理由。
2019中考数学一轮系列复习图形的变化综合提升测试B (含答案)1.若x 、y 为非零线段的长,则下列说法错误的是( )A .若73x y = ,则52x y x y +=-B .若2x ﹣5y=0,则212x y y -= C .若线段a :b=c :d,,则a b b c d d +=+ D .若线段a :b=c :d,则a m c b m d +=+ 2.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①△CF=2AF ;②tan ∠CAD=;③DF=DC ;④AEF ∽△CAB ;⑤52ABF CDEF S S ∆=四边形,其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个3.下列4个图形中,是中心对称图形但不是..轴对称的图形是( ). A . B . C . D .4.下面两个三角形一定相似的是( )A .两个等腰三角形B .两个直角三角形C .两个钝角三角形D .两个等边三角形5.如图,已知点A 、B 分别在反比例函数y=1x (x >0),y=﹣4x (x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A B .2 C D .46.如图,已知钝角三角形ABC ,将△ABC 绕点A 按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .55°B .65°C .75°D .85°7.如图,河提横断面迎水坡AB 的斜坡坡度i=1:是指坡面的铅直高度BC 与水平宽度AC 的比,若堤高BC=5m ,则坡面AB 的长度是( )A .mB .5mC .15mD .10m8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是( ).A .B .C .D .9.如图所示,在△ABC 中,∠CAB=70°,现将△ABC 绕点A 顺时针旋转一定角度后得到△AB′C′,连接BB′,若BB′∥AC′,则∠CAB′的度数为( )A .20° B.25° C.30° D.40°10.如图,□ABCD 中,E 是AD 延长线上一点,BE 交AC 于点F ,交DC 于点G ,则下列结论中错误的是( )A .△ABE ∽△DGEB .△CGB ∽△DGEC .△BCF ∽△EAFD .△ACD ∽△GCF11.若tana=12,则sina=___________________. 12.点A (-5,-6)与点B (5,-6)关于__________对称.13.在平面直角坐标系中,将点A(1,5)向右平移2个单位长度,可以得到对应点的坐标A′_________;将点A(1,5)向下平移6个单位长度,可以得到对应点的坐标A″________.14.如图,长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F 处,如果∠BAF=55°,则∠DAE =____15.四边形ABCD∽四边形A`B`C`D`,他们的面积之比为36:25,他们的相似比_____,若四边形A`B`C`D`的周长为15cm ,则四边形ABCD 的周长为________.16.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sin A =________.17.如图,直线2y =-与双曲线k y x= (k >0)在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则k 等于__.18.如图所示.将△ABC 沿直线DE 折叠后,使点A 与点C 重合,已知BC=6,△BCD 的周长为15,则AB=______.19.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°连接OD,则OD长的最大值为_____.20.将一个多边形放大为原来的3倍.则放大后的图形可作出____个.其原因是_____ 21.在平面直角坐标系中,已知两点A(-4,0)、B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A, B,C三点的抛物线解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.22.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC。
阶段性测试卷(二)(考查内容:三角形、四边形、圆时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.(改编题)如图,AB∥CD,CE交AB于点F.∠A=20°,∠E=30°,则∠C的度数为( A)A.50° B.55°C.60° D.65°2.(2018·蜀山区二模)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC的度数是( B)A.20° B.25°C.30° D.50°3.(2018·宿州月考)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D 作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( D)A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形4.(改编题)正方形ABCD的边长为2,对角线相交于点O,点O又是长方形MNPO的一个顶点,且OM=4,OP=2,长方形绕O点转动的过程中,长方形与正方形重叠部分的面积等于( D)A.6 B.4C .2D .15.(2018·衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm6.(2018·明光市二模)如图,AB 与⊙O 相切于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,则劣弧BC ︵的长是( B )A .π2B .π3C .π4D .π67.(2018·河南)如图,已知▱AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( A )A .(5-1,2)B .(5,2)C .(3-5,2)D .(5-2,2)8.(改编题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点B 作⊙O 的切线,交AC 的延长线于点F .已知3AE =BE =6,则CF 的长是( C )A.12 3 B.16 3C.12 D.16二、填空题(每小题5分,共15分)9.(改编题)如图,已知矩形ABCD的对角线AC的长为10 cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为__20__cm.10.(2018·青岛模拟)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为__18__.11.(原创题)如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,BD⊥AC.下列结论:①∠P+2∠D=180°;②∠BOC=∠BAD;③∠DBO=∠ABP;④∠ABP=∠ABD.其中正确结论有__①②④__(只填序号).三、解答题(共40分)12.(10分)(2018·朝阳区二模)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB =CD ,∵DE =CD ,∴AB 綊DE ,∴四边形ABDE 是平行四边形;(2)解:∵AD =DE =4,∴AD =AB =4,∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,BO =12BD ,∠ABO =12∠ABC ,又∵∠ABC =60°,∴∠ABO =30°,在Rt△ABO 中,AO =AB·sin ∠ABO=2,BO =AB·cos ∠ABO =23,∴BD =43,∵四边形ABDE 是平行四边形,∴AE∥BD ,AE =BD =43,又∵AC ⊥BD ,∴AC ⊥AE ,在Rt △AOE 中,OE =AE 2+AO 2=213.13.(15分)(2018·霍邱县二模)已知:如图,四边形ABCD 是⊙O 的内接四边形,直径DG 交边AB 于点E ,AB ,DC 的延长线相交于点F .连接AC ,若∠ACD =∠BAD .(1)求证:DG ⊥AB ;(2)若AB =6,tan ∠FCB =3,求⊙O 半径.(1)证明:连接AG ,∵∠ACD 与AGD 是同弦所对圆周角,∴∠ACD =∠AGD ,∵∠ACD =∠BAD ,∴∠BAD =∠AGD ,∵DG 为⊙O 的直径,A 为圆周上一点,∴∠DAG =90°,∴∠BAD +∠BAG =90°,∴∠AGD +∠BAG =90°,∴∠AEG =90°,即DG ⊥AB ;(2)解:∵四边形ABCD 是⊙O 的内接四边形,∴∠FCB =∠BAD ,∵tan ∠FCB =3,∴tan ∠BAD =DE AE =3,连接OA ,由垂径定理得AE =12AB =3,∴DE =9,在Rt △OEA 中,OE2+AE 2=OA 2,设⊙O 半径为r ,则有(9-r )2+32=r 2,解得,r =5,∴⊙O 半径为5.14.(15分)(2018·安徽四模)如图,⊙O 的直径AD 长为6,AB 是弦,∠DAB =30°,CD ∥AB ,且CD = 3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD =90°,∴BD =12AD =3,∵CD∥AB ,∠ABD =90°,∴∠CDB =∠ABD =90°,在Rt△CDB 中,tan C =BDCD=33=3,∴∠C =60°;(2)证明:连接OB ,∵BD =3,AD =6,∴∠A =30°,∵OA =OB ,∴∠OBA =∠A =30°,∵CD∥AB ,∠C =60°,∴∠ABC =180°-∠C =120°,∴∠OBC =∠ABC -∠ABO =120°-30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.。
2019中考数学数学一轮复习第一单元有理数单元检测试卷含答案考试时间:120分钟;满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2019的相反数是()A.﹣2019 B.﹣C.2019 D.2.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个3.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元4.下列计算正确的是()A.﹣(﹣3)=﹣3 B.﹣|﹣3|=﹣3 C.﹣(+3)=3 D.﹣|﹣3|=35.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC =3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1 B.5 C.6 D.86.下列计算正确的是()A.﹣6+4=﹣10 B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8 D.4﹣(﹣4)=07.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450 D.2!8.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大9.定义一种新运算:a※b=,则2※3﹣4※3的值()A.5 B.8 C.7 D.610.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是63,则m的值是()A.5 B.6 C.7 D.8二、填空题(本大题共4小题,每小题5分,共20分)11.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破220000000000元,将数字220000000000用科学记数法表示为.12.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.13.p在数轴上的位置如图所示,化简:|p+1|﹣|p﹣2|=.14.若x与y互为相反数,m是绝对值最小的数,则2019x+2019y+m=.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27).(2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣3.4,﹣21,π,,3.7,15%;正数集合:{ …},负整数集合:{ …},分数集合:{ …}非正数集合:{ …}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为0.5升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地?为什么?20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b =ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.选择题(共10小题)1.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.3.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.4.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.5.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣0.5,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.6.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣1.3﹣(﹣2.1)=﹣1.3+2.1=0.8,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.7.【解答】解:==50×49=2450 故选:C.8.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.9.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.10.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.二.填空题(共4小题)11.【解答】解:将220000000000用科学记数法表示为:2.2×1011.故答案为:2.2×1011.12.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.13.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.14.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,3.7,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣3.4,,3.7,15%…}非正数集合:{﹣2,﹣2,0,﹣3.4,﹣21…}故答案为:5,π,,3.7,15%,﹣2,﹣21,﹣2,﹣3.4,,3.7,15%,﹣2,﹣2,0,﹣3.4,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×0.5=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:。
2019中考数学一轮复习单元检测试卷第七单元平面直角坐标系考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.已知点A(﹣3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(2,3)D.(2,﹣3)4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)6.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)7.在下列点中,与点A(﹣2,﹣4)的连线平行于y轴的是()A.(2,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)8.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)9.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)二、填空题(本大题共4小题,每小题5分,共20分)11.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.12.已知△ABC的三个顶点分别为A(﹣2,3)、B(﹣4,﹣1)、C(2,0),现将△ABC平移至△A′B′C′处,且A′坐标为(﹣1,2),则B′、C′点的坐标分别为.13.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.在直角坐标平面内,已点A (3,0)、B (﹣5,3),将点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点.(1)写出C 点、D 点的坐标:C ,D ;(2)把这些点按A ﹣B ﹣C ﹣D ﹣A 顺次连接起来,这个图形的面积是 .16.如图,在平面网格中每个小正方形边长为1. (1)线段CD 是线段AB 经过怎样的平移后得到的; (2)线段AC 是线段BD 经过怎样的平移后得到的.17.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4)B (2,4)C (3,﹣1). (1)试在平面直角坐标系中,标出A 、B 、C 三点; (2)求△ABC 的面积.(3)若△DEF 与△ABC 关于x 轴对称,写出D 、E 、F 的坐标.18.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B →A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.20.在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位它与点重合.(3)连接CE,则直线CE与y轴位置关系是.(4)点F分别到x、y轴的距离分别是.21.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.(2)求爷爷家到和平路小学的直线距离.22.在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:秒,可得到的整数点的个数是个.(3)当P点从点O出发秒时,可得到整数点(10,5)23.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.参考答案与试题解析一.选择题(共10小题)1.解:点A(﹣3,0)在x轴的负半轴上.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:∵P在第四象限内,∴点P的横坐标>0,纵坐标<0,又∵点P到x轴的距离为3,即纵坐标是﹣3;点P到y轴的距离为2,即横坐标是2,∴点P的坐标为(2,﹣3).故选:D.4.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.5.解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x 轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.6.解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.7.解:∵平行于y轴的直线上所有点的横坐标相等,已知点A(﹣2,﹣4)横坐标为﹣2,所以结合各选项所求点为(﹣2,4).故选:C.8.解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.9.解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:C.二.填空题(共4小题)11.解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P的坐标为(﹣3,4).故答案为:(﹣3,4).12.解:∵﹣1﹣(﹣2)=1,2﹣3=﹣1,∴点A的横坐标加1,纵坐标减1可得A′的坐标;∴B′的横坐标为﹣4+1=﹣3,纵坐标为﹣1﹣1=﹣2;C′的横坐标为2+1=3,纵坐标为0﹣1=﹣1.故答案为:B′(﹣3,﹣2)、C′(3,﹣1).13.解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.14.解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n(2n﹣1,1)(n为不为0的自然数),﹣2当n=505时,A2018(1009,1).故答案为:(1009,1)三.解答题(共9小题)15.解:(1)∵点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点, ∴得C (﹣3,0),D (﹣5,﹣3);(2)如图,S 四边形ABCD =S △ABC +S △ACD ,=×3×6+×3×6, =18.故答案为(﹣3,0),(﹣5,﹣3);18.16.解:(1)将线段AB 向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD .(2)将线段BD 向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC .17.解:(1)如图所示:(2)由图形可得:AB =2,AB 边上的高=|﹣1|+|4|=5,∴△ABC 的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).18.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.19.解:(1)A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);(2)1+4+2+1+2=10;(3)点P如图所示.20.解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.21.解:(1)以爷爷家为坐标原点,东西方向为x 轴,南北方向为y 轴建立坐标系.可得:和平广场A 坐标为(400,0);老年大学(﹣600,0);平路小学(﹣400,﹣300).(2)由(1)得:和平路小学(﹣400,﹣300),爷爷家为坐标原点,即(0,0)故爷爷家到和平路小学的直线距离为=500(m ).22.解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.23.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.。
1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。
2019中考数学数学一轮复习单元检测试卷第二单元整式的加减一、选择题(本大题共10小题,每小题4分,共40分)1.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc2.单项式﹣x2y的系数和次数分别为()A.﹣,3B.﹣,2C.,3D.,23.小明按如图所示的程序输入一个正数x,最后输出的结果为597,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.无数个4.若﹣3x m y3和8x5y n是同类项,则它们的和是()A.5x10y6B.﹣11x10y6C.5x5y3D.﹣11x5y65.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列各式中,正确的是()A.3a+b=3ab B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.﹣2(x﹣4)=﹣2x﹣48.若﹣2a2n b2m﹣2与b m+1a n+1可以合并,那么4n﹣2m的值是()A.﹣2B.﹣1C.1D.29.下列各式中,去括号错误的是()A.a+(b﹣c)=a+b﹣c B.a﹣(b﹣c)=a﹣b+cC.a+(﹣b+c)=a﹣b+c D.a﹣(﹣b﹣c)=a+b﹣c10.如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道哪个正方形的边长即可()A.④B.③C.②D.①二、填空题(本大题共4小题,每小题5分,共20分)11.已知代数式x+3y﹣3的值是3,则代数式1﹣3x﹣9y的值是.12.某企业2018年9月份产值为x万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是万元(用含x的代数式表示)13.若m2+mn=﹣7,n2﹣5mn=﹣17,则m2+6mn﹣n2=.14.定义为二阶行列式,规定它的运算法则为=ad﹣bc,那么当x=﹣1时,二阶行列式的值为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)3a2+3b2+2ab﹣4a2﹣3b2;(2)a2+(5a2﹣2a)﹣2(a2﹣3a).16.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.17.已知:a2+2ab=﹣2,b2﹣2ab=6,求下列代数式的值:(1)a2+b2;(2)3a2﹣2ab+4b2.18.已知m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,求代数式m2+3m﹣的值.19.如图,大正方形的边长为a,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.20.探究代数式a3+b3+3ab(a+b)与代数式(a+b)3的关系.(1)请分别计算当a=1,b=3时;当a=﹣1,b=2时两个代数式的值.(2)请写出你发现的规律:,并利用你发现的规律计算:513﹣3×51×49×2﹣493的值.21.光明中学组织学生到距离学校9千米的博物馆参观,学生小华因有事未能上包车,于是准备在学校门口直接乘出租车去博物馆,出租车的收费标准如下:(1)写出小华乘出租车的里程数为x千米(x≥3)时,所付车费为元(用含x的代数式表示);(2)如果小华同学身上仅有25元钱,由学校乘出租车到博物馆钱够不够?请说明理由.22.已知等式=1﹣,=,=,=,…………根据以上提供的信息,回答下列问题(1)你发现的规律是(用字母m表示).(2)应用你发现的规律计算;++++…………+++.23.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数.参考答案与试题解析一.选择题(共10小题)1.【解答】解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.2.【解答】解:单项式﹣x2y的系数和次数分别为:﹣,3.故选:A.3.【解答】解:若4x+1=597,则有x=149,若4x+1=149,则有x=37,若4x+1=37,则有x=9,若4x+1=9,则有x=2,若4x+1=2,则有x=,则满足条件的x不同值最多有5个,故选:B.4.【解答】解:∵﹣3x m y3和8x5y n是同类项,∴m=5,n=3,∴﹣3x m y3和8x5y n的和是:5x5y3.故选:C.5.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.6.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.7.【解答】解:(A)原式=3a+b,故A错误;(B)原式=a,故B错误;(D)原式=﹣2x+8,故D错误;故选:C.8.【解答】解:由题意可知:2n=n+1,2m﹣2=m+1,∴n=1,m=3,∴原式=4﹣6=﹣2,故选:A.9.【解答】解:(D)原式=a+b+c,故D错误;故选:D.10.【解答】解:设正方形③的边长为x,正方形①的边长为y,则正方形②的边长为x﹣y,正方形④的边长为x+y,长方形⑤的长为y+x+y=x+2y,所以整张卡片的周长=2(x﹣y+x)+2(x﹣y+x+2y)=4x﹣2y+2x﹣2y+2x+4y=8x,所以只需知道正方形③的边长即可.故选:B.二.填空题(共4小题)11.【解答】解:因为x+3y﹣3=3,所以x+3y=6,﹣3x﹣9y=﹣18,所以1﹣3x﹣9y=1﹣18=﹣17.故答案为:﹣1712.【解答】解:∵某企业今年9月份产值为x万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x万元.故答案为:(1﹣10%)(1+10%)x13.【解答】解:由题意可知:m2+mn=﹣7,n2﹣5mn=﹣17,∴(m2+mn)﹣(n2﹣5mn)=m2+6mn﹣n2=﹣7﹣(﹣17)=17﹣7=10,故答案为:10.14.【解答】解:由定义可知:原式=﹣2(x﹣1)﹣(x+1)=﹣2x+2﹣x﹣1=﹣3x+1,当x=﹣1时,原式=3+1=4,故答案为:4三.解答题(共9小题)15.【解答】解:(1)原式=(3a2﹣4a2)+(3b2﹣3b2)+2ab=﹣a2+2ab;(2)原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a.16.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.17.【解答】解:∵a2+2ab=﹣2,b2﹣2ab=6,∴(1)原式=(a2+2ab)+(b2﹣2ab)=6﹣2=4;(2)原式=3(a2+2ab)+4(b2﹣2ab)=﹣6+24=18.18.【解答】解:∵m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+x﹣3y)=(2m+6)x2﹣x+4y,∴2m+6=0,解得:m=﹣3,∴m2+3m﹣=9﹣9﹣=﹣.19.【解答】解:(1)根据题意得:b2+b(a﹣b)=b2+ab﹣b2=ab;=×20×12=120.(2)当a=20,b=12时,S阴影20.【解答】解:(1)当a=1,b=3时,a3+b3+3ab(a+b)=13+33+3×1×3×(1+3)=1+27+36=64;(a+b)3=(1+3)3=43=64;当a=﹣1,b=2时,a3+b3+3ab(a+b)=(﹣1)3+23+3×(﹣1)×2×(﹣1+2)=﹣1+8﹣6=1;(a+b)3=(﹣1+2)3=13=1;(2)a3+b3+3ab(a+b)=(a+b)3或(a+b)3=a3+b3+3ab(a+b),513﹣3×51×49×2﹣493=513+3×51×(﹣49)×[51+(﹣49)]+(﹣49)3=[51+(﹣49)]3=23=8.故答案为:a3+b3+3ab(a+b)=(a+b)3或(a+b)3=a3+b3+3ab(a+b)21.【解答】解:(1)由题意得,所付车费为:2.4(x﹣3)+10=2.4x+2.8(x≥3);(2)将x=9代入得:2.4×9+2.8=24.4(元),∵25>24.4,∴25元钱够到达博物馆.22.【解答】解:(1)发现的规律是:=﹣;(2)++++…………+++=1﹣++++…………+﹣+﹣+﹣=1﹣=.23.【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,∴点D表示的数是﹣4,故答案为:﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为=.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为:(i)(ii)(iii);②点P表示的数为.第11页(共11页)。
2019届山东省九年级一轮复习验收检测数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ―的倒数是()A.-2 B.2 C. D.―二、单选题2. 如图,已知,直角三角板的直角顶点在直线上,若,则等于()A. B. C. D.3. 在下列运算中,计算正确的是()A. B.C. D.4. 如下图是某几何体的三视图,则与该三视图相对应的几何体是()A. B. C. D.5. 不等式组的解集在数轴上表示正确的是()A. B. C.D.6. 为了丰富同学们的业余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用了320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍x元,每副乒乓球拍y元,可列二元一次方程组为( )A. B. C. D.7. 一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.8. 如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为12cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′ 落在AB边上时,则点A′所转过的路径长为()A. B. C. D.9. 如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A. 22.5°B. 20°C. 15°D. 12.5°10. 如图,在中,,分别为,边上的中线,,若,则的面积为()A. 4B. 8C. 12D. 1611. 如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接DE,下列结论:①∠AED=∠CED;②AED为等腰三角形;③EH=CE;④图中有3个等腰三角形.结论正确的个数为()A. 1个B. 2个C. 3个D. 4个参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】。
2019年深圳中考数学一轮复习《(图形与变换》单元测试卷(考试时间:90分钟 试卷满分:100分)一、选择题(本题共12小题,每小题3分”共36分)1•下列图形中,既是中心对称图形又是轴对称图形的是() A.等边三角形 B.平行四边形C.梯形 D.矩形2. 在平面直角坐标系中,若将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(・3,2)重 合'则点A 的坐标是()A.(2,5)B.(-8,5)C.(-8,-l)D.(2Z -1)3. 如图D7-1是由5个完全相同的小正方体组成的几何体,则这个几何体的主视图是.()出Elfl L0 El] AB C D 图 D7-2 4. 下列几何体各自的三视图中,只有两个视图相同的是()5. 已知:如图D7-4,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正 方体的个数是()A.①③B.②③C.③④ 左视图D.②④Er图D7-4俯视图A.6个B.7个C.8个D.9个6.如图D7-5,A ODC是由△ OAB绕点0顺时针旋转31。
后得到的图形,若点D恰好落在AB上且ZAOC的D.400度数为100;则ZDOB的度数是()7.如图D7・6,直线y=-^x+2与x轴、y轴分別交于A,B两点”把厶AOB绕点A顺时针旋转60。
后得到△ AO'B',A.(4,2V3)B.(2V3,4)C.(V3,3)D.(2V3+2,2V3)8.如图D7・7,在RtA ABC中/ZACB=90°,ZA<ZB z CM是斜边AB上的中线”将△ ACM沿直线CM折叠,点A落在点D处.如果CD恰好与AB垂直,则ZA的度数为()A.15°B.30°C.45°D.60°9.如图D7・8,在平面直角坐标系xOy中,己知点A(匹,0),B(l,l).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移(2V2-1)个单位,再向上平移1个单位C. 向右平移返个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位10.如图D7-9,^ A ABC绕点B顺时针旋转60。
2019中考数学一轮复习《一次函数》单元测试题2019中考数学一轮复习单元检测试卷第十九单元一次函数考试时间:120分钟;满分:150分学校:____________ 姓名:________________ 班级:___________ 考号:____________得分评卷人一、选择题(本大题共10小题,每小题4分,共40分)1.在函数y =中,自变量x的取值范围是()A. x W - 3 B . x3 . x V - 3 D . x > - 32.变量x与y之间的关系是y = 2x - 3,当因变量y = 6 时,自变量x的值是()A. 9 B . 15 . 4.5 D . 1.53 .早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A. B ..D .4. 已知点(-2, y1), (- 1, y2), (1, y3)都在直线y =- x上,贝U y1, y2, y3的大小关系是()A. y1 > y2 > y3 B . y1 v y2 v y3 . y3 > y1 > y2 D . y3 v y1 v y25. 若函数y = kx (k工0)的值随自变量的增大而增大,则函数y = x+2k的图象大致是()A. B ..D .6. 如图,在平面直角坐标系中,AB的顶点A在x轴上,定点B的坐标为(6, 4),若直线经过定点(1, 0),且将平行四边形AB分割成面积相等的两部分,则直线的表达式()A. y = 3x - 2 B . y = x - . y = x - 1 D . y = 3x - 37 .如图,已知一次函数y = kx+b的图象与x轴,y轴分别交于点(2, 0),点(0, 3).有下列结论:①关于x的方程kx+b = 0的解为x = 2;②关于x的方程kx+b = 3的解为x =0;③当x>2时,y v 0;④当x v 0时,y v 3.其中正确的是()A.①②③B .①③④.②③④ D .①②④&速度分别为100k/h和ak/h (0v a v 100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y (k)与行驶时间t (h)之间的函数关系如图所示.下列说法:① a = 60;②b= 2;3= b+ ;④若s = 60,则b=.其中说法正确的是( )A.①②③B .②③④.①②④ D .①③④9. 如图,已知直线I :,过点A (0, 1 )作y轴的垂线交直线I于点B,过点B作直线I的垂线交y轴于点A1; 过点A1作y轴的垂线交直线I于点B1,过点B1作直线I的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为( )A. (0, 128) B . ( 0, 256) . (0, 512) D . ( 0, 1024)10. 如图,等边三角形和正方形的边长均为a,点B, D, E在同一直线上,点与点D重合.△ AB以每秒1个单位长度的速度沿BE向右匀速运动.当点与点E重合时停止运动.设△ AB的运动时间为t秒,△ AB与正方形DEFG重叠部分的面积为S,则下列图象中,能表示S与t的函数关系的图象大致是( )A. B ..D .得分评卷人二、填空题(本大题共4小题,每小题5分,共20分)11. 某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:t (小时)0 1 2 3y (升)100 92 84 76由表格中y与t的关系可知,当汽车行驶小时,油箱的余油量为0.12 .若点(a,3)在函数y = 2x - 3的图象上,a的值是 .13 .如图,是坐标原点,菱形AB的顶点A的坐标为(3, 4),顶点在x轴的正半轴上,则/ A的角平分线所在直线的函数关系式为14 .点A (, n)为直线y =- x+4上一动点,且满足-4 VV 4,将点绕点B (-,-)逆时针旋转90°得点,连接A,则线段A长度的取值范围是得分评卷人三、解答题(本大题共9小题,满分90分,其中第15,16,17,18 题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.已知y与x+2成正比,当x = 4时,y = 4.(1)求y与x之间的函数关系式;(2)若点(a, 3)在这个函数图象上,求a的值.16 .已知一次函数y = kx+b的图象如图所示(1)求k、b的值;(2)在平面直角坐标系内画出函数y = bx+k的图象;(3)利用(2)中你所画的图象,写出O v x v 1时,y 的取值范围.17.已知正比例函数y = kx图象经过点(3, - 6),求:(1)这个函数的解析式;(2)判断点A (4,- 2)是否在这个函数图象上;(3)图象上两点B( x1 , y1 )、(x2 , y2),如果x1 > x2 , 比较y1 , y2的大小.18 .如图,在平面直角坐标系中, A (4, 0), B( 0 , 2), (4,4).已知四边形ABD为菱形,其中AB与B为一组邻边.(1)请在图中作出菱形ABD并求出菱形ABD的面积;(2)过点A的直线I : y = x+b与线段D相交于点E, 请在图中作出直线I的图象,并求出厶ADE的面积.19 .小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的汽车速度最快,速度在安全限度内吗?20 .如图,在平面直角坐标系xy中,直线y =- x+4 与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△ DAB 沿直线AD折叠,点B恰好落在x轴正半轴上的点处.(1)求AB的长;(2)求点和点D的坐标;(3)y轴上是否存在一点P,使得S A PAB= S △ D?若存在,直接写出点P的坐标;若不存在,请说明理由.21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2 所示.(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本)(2)分别求出y1、y2与x之间的函数关系式;(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.22 .某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线AB表示日销售量y (件)与销售时间x (天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w (元),求w与x 之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5< x< 17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)23.阅读下列两段材料,回答问题:材料一:点(x1 ,y1 )B(x2 ,y2)的中点坐标为(,).例如,点(1, 5), (3,- 1)的中点坐标为(,),即(2, 2).材料二:如图1,正比例函数11 : y = k1x和12 : y = k2x 的图象相互垂直,分别在11和12上取点A, B,使得A= B.分别过点A, B作x轴的垂线,垂足分别为点, D.显然,△ A ◎ △ BD.设=BD= a, A= D= b,贝U A (- a, b), B(b, a).于是k1 = - , k2 =,所以k1?k2的值为一个常数.一般地,一次函数y = k1x+b1 , y = k2x+b2可分别由正比例函数11 , 12平移得到.所以,我们经过探索得到的结论是:任意两个一次函数y = k1x+b1 , y = k2x+b2的图象相互垂直,则k1?k2的值为一个常数.(1)在材料二中,k1?k2 =(写出这个常数具体的值);(2)如图2,在矩形BA中A (4, 2),点D是A中点,用两段材料的结论,求点D的坐标和A的垂直平分线I的解析式;(3)若点’与点关于A对称,用两段材料的结论,求点’的坐标.参考答案与试题解析一.选择题(共10小题)1 .解:在函数y =中,x+3>0,解得:x>- 3,故自变量x的取值范围是:x>- 3.故选:B.2 .解:当y = 6 时,2x —3 = 6,解得:x = 4.5 ,故选:.3. 解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.4. 解:〔•直线y =- x, k= - 1v 0,••• y随x的增大而减小,又•••- 2v- 1 v 1,• y1 > y2 > y3.故选:A.5 .解:•••正比例函数y = kx (k是常数,k工0)的函数值y随x的增大而增大,• k > 0,•••一次函数y = x+2k,k'= 1>0, b= 2k>0,•••此函数的图象经过一、二、三象限.故选:A.6 .解:•••点B的坐标为(6, 4),•••平行四边形的中心坐标为(3, 2),设直线I的函数解析式为y = kx+b ,则,解得,所以直线I的解析式为y = x - 1.故选:.7 .解:由图象得:①关于x的方程kx+b = 0的解为x=2,正确;②关于x的方程kx+b = 3的解为x = 0,正确;③当x>2时,y v 0,正确;④当x v0时,y>3,错误;故选:A.&解:①两车的速度之差为80 + (b+2- b) = 40(k/h ), a= 100 - 40= 60,结论①正确;②两车第一次相遇所需时间=(h),••• s的值不确定,••• b值不确定,结论②不正确;③两车第二次相遇时间为b+2+ = b+ ( h),.•.= b+,结论③正确;④b= ,s = 60,b=,结论④正确.故选:D.9 .解:••直线I的解析式为;y = x , •••I与x轴的夹角为30 °,•A B// x 车由,•••/ AB= 30 °,•A= 1,•B= 2,•A B=,•A1B 丄I ,•••/ ABA1= 60°,•• A1 = 4,•A1 (0, 4),同理可得A2 (0 , 16),•• ••A4纵坐标为44= 256 ,•A4 (0 , 256).故选:B.10 .解:如图所示,设厶AB平移中与DG交于点H, 当t < a 时,S= S A HD= D?HD= t?t?tan60 ° = t2 , 该函数为开口向上的抛物线;当t > a时,S= S 四边形ADH= S A AB- S A BDH=—(a - t) (a —t ) tan60 ° 一— (a —t ) 2,该函数为开口向下的抛物线;故选:.二.填空题(共4小题)11.解:由题意可得:y = 100 —8t ,当y = 0 时,0= 100 —8t解得:t = 12.5 .故答案为:12.5 .12 .解:把点(a, 3)代入y = 2x —3得:2a —3 = 3,解得:a= 3,故答案为:3.13 .解:如图所示,延长BA交y轴于D贝U BD丄y轴, •••点A的坐标为(3, 4),AD= 3, D= 4,A= AB= 5,BD= 3+5 = 8,.B (8 , 4),设/ A的角平分线所在直线的函数关系式为y = kx, •••菱形AB中,/ A的角平分线所在直线经过点B, 4= 8k,即k =,•••/ A的角平分线所在直线的函数关系式为y = x ,故答案为:y = x .14 .解:如图1中,T A (, n),•••点A关于原点对称点A'(-,- n),••• A'的中点B (-,-);•A= 2B= 2B,•• tan / AB==,•••点A在运动过程中,△ AB的形状相同,•A B的值最大时,A的值最大,AB的值最小时,A的值最小,当点A的坐标为(-4, 8)时,AB的值最大,此时 B (2, - 4),•- AB= = 6 ,•- B= AB = 2 ,•- A= = 10 .如图2中,当直线AB丄直线y =- x+4时,AB的值最小,此时直线AB的解析式为y = x,由,解得,•-A (2, 2), B (- 1,- 1),AB= = 3 ,B= AB =,A= = 2 ,综上所述,线段A长度的取值范围是 2 < A v 10 , 故答案为2 < A v 10 .三.解答题(共9小题)15 .解:( (1 )设y = k (x+2),•••当x = 4 时,y = 4,.k (4+2) = 4,.y与x之间的函数关系式为y = (x+2) = x+ ;(2)v点(a, 3)在这个函数图象上,..a+ = 3,a= 2.5•16 .解:(1)A(0,- 2), B (1 , 0).将 A (0, —2), B (1, 0)两点代入y = kx+b中,得b=- 2, k - 2= 0, k = 2.(2)对于函数y =- 2x+2 ,列表:y 2 0图象如下:(3)由图象可得:当O v x v 1时,y的取值范围为:0 v y v 2.17 .解:(1)•••正比例函数y = kx经过点(3, - 6),•••- 6= 3?k,解得:k =- 2,•••这个正比例函数的解析式为:y =- 2x;(2)将x = 4 代入y = - 2x 得:y = - 8 工-2,•••点A (4, - 2)不在这个函数图象上;(3)v k =- 2 v 0,••• y随x的增大而减小,••• x1 > x2 ,• y1 v y2 .18 .解:(1)••点A的坐标为(4, 0),点B的坐标为(0, 2),点的坐标为(4, 4),•••点D的坐标为(4+4-0, 0+4- 2),即(8, 2).作出菱形ABD,如图所示.S 菱形ABD= A?BD= X 8X 4= 16 .(2)将 A (4, 0)代入y = x+b,得:0= X 4+b,•- b=- 6.•••点的坐标为(4, 4),点D的坐标为(8 , 2),•••直线D的解析式为y = - x+6 .联立直线I与直线D的解析式成方程组,得:,解得:,•••点E的坐标为(6, 3),••• S A ADE= X 2X 3+ X( 3+2)X 2 - X4X 2 = 4.19 .解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)小明在书店停留了12 - 8= 4 (分钟),故答案为:4;(3)本次上学途中,小明一共行驶了:1500+ (1200 -600)X 2= 2700 (米),一共用了14 分钟,故答案为:2700 , 14;(4)当时间在0〜6分钟内时,速度为:1200 + 6 = 200 米/分钟,当时间在6〜8分钟内时,速度为:(1200 - 600)-( 8 -6 )= 300米/分钟,当时间在12〜14分钟内时,速度为:(1500 - 600)(14 - 12)= 450 米/ 分钟,••• 450 > 300 ,•••在整个上学途中12〜14分钟时间段小明的汽车速度最快,速度不在安全限度.20 .解:(1 )令x = 0 得:y = 4,••• B (0, 4).B= 4令y = 0 得:0= - x+4,解得:x = 3,•A(3, 0).•• A= 3.在Rt△ AB中,AB= = 5.•• = A+A= 3+5= 8,•( 8, 0).设D= x,贝» D= DB= x+4.在Rt △ D 中,D2= D2+2,即(x+4) 2 = x2+82,解得:x =6,•D(0,- 6).(3)v S A PA吐S △D,•S A PAB= x x 6X 8= 12.•••点Py 轴上,S A PA吐12,•B P?A = 12,即x 3BP= 12,解得:BP= 8,•P点的坐标为(0, 12)或(0,- 4).21.解:(1)由图可知,6月份每千克售价为3元,成本为1元,•每千克收益为3 - 1 = 2元;(2)设y1 = kx+b,将(3, 5)和(6, 3)代入得,,解得y1 =.设y2 = a (x - 6) 2+1,把(3, 4)代入得,4= a (3 - 6) 2+1,解得a=.••• y2 = (x - 6) 2+1,即y2 = x2 - 4x+13 .(3)收益=y1 - y2= (x - 5) 2+ ,T a= v 0,•••当x = 5时,最大值=故5月出售每千克收益最大,最大为22 .解:(1 )当1<x< 10时,设AB的解析式为:y =kx+b,把 A (1, 300), B (10, 120)代入得:,解得:,• AB: y =- 20x+320 (1< x < 10),当10v x< 30 时,同理可得B:y = 14x - 20, 综上所述,y与x之间的函数表达式为:;(2)当1< x < 10 时,w=( 10- 6) (- 20x+320 )=-80X+1280,当w= 1040 元,-80x+1280 = 1040 ,x = 3,•••- 80v 0,••• w随x的增大而减小,•••日销售利润不超过1040元的天数:3, 4, 5, 6, 7, 8, 9,10,一共8 天;当10V x< 30 时,w= (10- 6) (14x - 20) = 56x - 80,56x - 80= 1040,x = 20,••• 56> 0,•w随x的增大而增大,•日销售利润不超过1040元的天数:11, 12, 13, 14, 15, 16, 17, 18, 19, 20, —共10 天;综上所述,日销售利润不超过1040元的天数共有18天;(3)当5< x < 10 时,当x = 5 时,w 大=-80 X 5+1280 =880,当10V x< 17 时,当x = 17 时,可大=56X 17 - 80= 872,•••若5<x< 17,第5天的日销售利润最大,最大日销售利润是880元.23.解:(1 )T k1 = - , k2 =,•k1?k2 = - ? =- 1.故答案为:-1 .(2)v点的坐标为(0, 0),点A的坐标为(4, 2),点D是A中点,•••点D的坐标为(2, 1).•••点A的坐标为(4, 2),•••直线A的解析式为y = x .•••直线I丄直线A,•设直线I的解析式为y =- 2x+ .•••直线I过点D (2, 1),•- 1 =- 4+,解得:=5,.精品文档.•A的垂直平分线I的解析式为y =- 2x+5.(3)v点A的坐标为(4, 2),四边形BA为矩形,•••点的坐标为(0, 2).设直线’的解析式为y =- 2x+n ,•••直线’过点(0, 2),•n= 2,即直线’的解析式为y =- 2x+2 .联立直线’和A的解析式成方程组,得:,解得:,•••点E的坐标为(,).•••点E为线段’的中点,•••点’的坐标为(X 2 - 0, X 2 - 2),即(,-).2016全新精品资料-全新公文范文-全程指导写作-独家原创21 / 20。
2019年中考一轮复习数学试题(附答案)初中最重要的阶段,大家一定要把握好初中,多做题,多练习,为中考奋战,小编为大家整理了2019年中考一轮复习数学试题,希望对大家有帮助。
A级基础题1.下列各组线段(单位:cm)中,是成比例线段的为()A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,2,32.(2019年北京)如图6-4-14,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB=()A. 60 mB. 40 mC. 30 mD. 20 m3.(2019年上海)如图6-4-15,已知在△ABC中,点D,E,F 分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB=()A. 5∶8B.3∶8C.3∶5D.2∶54.若两个相似三角形的面积之比为1∶16,则它们的周长之比为()A.1∶2B.1∶4C.1∶5D.1∶165.(2019年江苏无锡)如图6-4-16,在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,AD=1,BC=4,则△AOD与△BOC 的面积之比等于()A.12B.14C.18D.1166.(2019年山东威海)如图6-4-17,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.下列结论错误的是()A.∠C=2∠AB.BD平分∠ABCC.S△BCD=S△BODD.点D为线段AC的黄金分割点7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________________.8.(2019年四川雅安)如图6-4-18, 在?ABCD,E在AB上,CE,DB交于F,若AE∶BE=4∶3,且BF=2,则DF=________.9.(2019年江苏泰州)如图6-4-19,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为________.10.(2019年湖南株洲)如图6-4-20,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于点O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.B级中等题11.(2019年山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图6-4-21,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有__________条.12.如图6-4-22,大江的同一侧有A,B两个工厂,它们都有垂直于江边的小路,AD,BE的长度分别为3千米和2千米,且两条小路之间的距离为5千米.现要在江边建一个供水站向A,B两厂送水,欲使供水管路最短,则供水站应建在距E处多远的位置?13.(2019年湖南株洲)如图6-4-23,在△ABC中,∠C=90°,BC=5米,AC=12米.点M在线段CA上,从C向A运动,速度为1米/秒;同时点N在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM;(2)当t为何值时,△AMN的面积最大?并求出这个最大值. 图6-4-23C级拔尖题14.(2019年山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图6-4-24.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF应为多长(材质及其厚度等暂忽略不计)?图形的相似1.B2.B3.A4.B5.D6.C7.②③8.143 解析:AB∥CD?△BEF∽△DCF?BECD=BFDF,又∵AEBE=43,∴BEAB=37,即BECD=37,则有37=2DF,DF=143.9.53,-410.(1)证明:∵A与C关于直线MN对称,∴AC⊥MN.∴∠COM=90°.在矩形ABCD中,∠B=90°,∴∠COM=∠B.又∵∠ACB=∠MCO,∴△COM∽△CBA.(2)解:∵在Rt△CBA中,AB=6,BC=8,∴AC=10,∴OC=5.∵△COM∽△CBA,∴OCCB=OMAB,OM=154.11.312.解:如图55,作出点B关于江边的对称点C,连接AC,则BF+FA=CF+FA=CA.根据两点之间线段最短,可知当供水站在点F处时,供水管路最短.∵△ADF∽△CEF,∴设EF=x,则FD=5-x,根据相似三角形的性质,得EFFD=CEAD,即x5-x=23,解得x=2.故供水站应建在距E点2千米处.13.解:(1)由题意,得AM=12-t,AN=2t.∵∠AMN=∠ANM,∴AM=AN,从而12-t=2t,解得t=4秒.∴当t为4秒时,∠AMN=∠ANM.(2)如图56,过点N作NH⊥AC于点H,∴∠NHA=∠C=90°.∵∠A是公共角,∴△NHA∽△BCA.∴ANAB=NHBC,即2t13=NH5,∴NH=10t13.从而有S△AMN=12(12-t)?10t13=-513t2+6013t,∴当t=6时,S有最大值为18013.14.解:如图57,过点C作CM∥AB,交EF,AD于N,M,作CP⊥AD,交EF,AD于Q,P.由题意,得四边形ABCM是平行四边形,∴EN=AM=BC=20 cm.∴MD=AD-AM=50-20=30(cm).由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm.∵EF∥AD,∴△CNF∽△CMD.∴NFMD=CQCP,即NF30=3240.解得NF=24 cm.∴EF=EN+NF=20+24=44(cm).语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
2019中考数学一轮复习单元检测试卷第十一单元三角形考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)得分评卷人1.如图,在△ABC中,∠ACB=90°,∠ADC=90°,则△ABC斜边AB上的高为()A.CD B.AC C.BC D.BD第1题第2题第4题第5题2.如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.63.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.44.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°5.如图在△ABC中,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE的度数为()A.68°B.58°C.52°D.48°6.如图,顺次连结同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC =120°,若∠ABC的平分线BE经过点D,则∠ABE的度数()A.20°B.30°C.40°D.60°第6题第9题第10题7.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°8.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.2或8C.7或8或9D.8或9或10 9.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°10.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D =30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°二、填空题(本大题共4小题,每小题5分,共20分)得分评卷人11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD 与BE交于H,则∠CHD =.12.如图,在△ABC中,∠B=60°,AD平分∠BAC,点E在AD延长线上,且EC⊥AC.若∠E=50°,则∠ADC的度数是.13.如图,把三角形纸片ABC折叠,使得点B,点C都与点A重合,折痕分别为DE,MN,若∠BAC=110°,则∠DAM =度.14.一个正多边形的每个内角都是150°,则它是正边形.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每得分评卷人题8分,19,20题每题10分,21,22题每题12分,23题14分)15.若a,b,c是△ABC的三边,化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b+c|.16.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.17.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.18.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.19.如图,点P是△ABC内任意一点,求证:PA+PB+PC>AB+BC+AC.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.22.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)(1)∠ABO的度数为,△AOB(填“是”或“不是”)“和谐三角形”;(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC 上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B的度数.23.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D 的关系,直接写出结论.参考答案与试题解析一.选择题(共10小题)1.解:∵∠ADC=90°,∴CD⊥AB,∴CD是△ABC斜边上的高,故选:A.2.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.3.解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.4.解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.5.解:∵∠A=70°,∠ACD=20°,∴∠BDF=∠A+∠ACD=70°+20°=90°,在△BDF中,∠BFD=180°﹣∠BDF﹣∠ABE=180°﹣90°﹣32°=58°,∴∠CFE=∠BFD=58°.故选:B.6.解:∵∠ADE=∠ABD+∠A,∠EDC﹣∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120°=40°+20°+∠ABC,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠ABC=30°,故选:B.7.解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.8.解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.9.解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.10.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.二.填空题(共4小题)11.解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.解:∵EC⊥AC.∠E=50°,∴∠DAC=40°,∵AD平分∠BAC,∴∠BAD=40°,∵∠B=60°,∴∠ADC=40°+60°=100°,故答案为:100°.13.解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵把三角形纸片ABC折叠,使得点B,点C都与点A重合,∴∠BAD=∠B,∠CAM=∠C,∴∠BAD+∠CAM=∠B+∠C=70°,∴∠DAM=∠BAC﹣∠BAD﹣∠CAM=110°﹣70°=40°,故答案为:40.14.解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.三.解答题(共9小题)15.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c++a+b﹣c﹣a﹣b﹣c=a﹣b﹣c.16.证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.17.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.18.解:(1)连接个数123456出现三角形个数3610152128(2)8个点;(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故答案为(n+1)(n+2).19.证明:∵PA+PB>AB,PB+PC>BC,PC+PA>AC.∴把它们相加,再除以2,得PA+PB+PC>AB+BC+AC.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.又∵∠F=25°,∴∠F=∠CEB=25°,∵DF∥BE.21.解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(3)能.∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=×40°=20°.22.解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“和谐三角形”,故答案为:30;是;(2)证明:∵∠MON=60°,∠ACB=80°,∵∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∵∠AOB=60°=3×20°=3∠OAC,∴△AOC是“和谐三角形”;应用拓展:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“和谐三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.23.(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,∵∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案为:26°;【拓展延伸】(4)同法可得:∠P=x+y;故答案为:∠P=x+y,(5)同法可得:∠P=.故答案为:∠P=.。
2019中考数学一轮复习单元检测试卷第十三单元轴对称考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.下列银行图标中,是轴对称图形的是()A.徽商银行B.中国建设银行C.交通银行D.中国银行2.如图是一个经过改造的规则为3×5的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋3.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112°,则∠EAF为()A.38°B.40°C.42°D.44°4.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=α,则∠ACB的度数为()A.αB.90°﹣αC.45°D.α﹣45°5.在平面直角坐标系中,点M(﹣3,﹣6)关于y轴对称点的坐标为()A.(3,﹣6)B.(﹣3,6)C.(3,6)D.(﹣6,﹣3)6.在平面直角坐标系中,已知点A(m,3),与点B(4,n)关于y轴对称,那么(m+n)2019的值为()A.1B.﹣1C.﹣72019D.720187.在平面直角坐标中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,5)B.(a,﹣5)C.8.在△ABC中,∠ABC与∠ACB的平分线交于点I,过点I作DE∥BC交BA于点D,交AC于点E,AB=5,AC=3,∠A=50°,则下列说法错误的是()A.△DBI和△EIC是等腰三角形B.I为DE中点C.△ADE的周长是8D.∠BIC=115°9.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状10.如图,将△ABC沿着过AP中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2,按上述方法不断操作下去…经过第2018次操作后得到的折痕D2017E2017到BC的距离记为h2018,若h1=1,则h2018的值为()A.2﹣B.C.1﹣D.2﹣二、填空题(本大题共4小题,每小题5分,共20分)11.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是.12.在同一平面内,将一副直角三角板ABC和EDF如图放置(∠C=60°,∠F=45°),其中直角顶点D是BC的中点,点A在DE上,则∠CGF=°.13.如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=度.14.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2019次变换后所得的A点坐标是.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.如图,在△ABC中,∠B=45°,∠C=30°,作AC的中垂线交BC于E,连接AE,若AE=4,求BC的长.16.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.17.如图,在12×10的正方形网格中,△ABC是格点三角形,点B、C的坐标分别为(﹣5,1),(﹣4,5).(1)在图中画出相应的平面直角坐标系;(2)画出△ABC关于直线l对称的△A1B1C1,并标出点A1的坐标;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.18.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.19.如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,C为线段BD上一点,分别过B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(书写过程)(2)AC+CE的最小值是;(3)根据(2)中的规律和结论,请画出示意图并在图中标注数据,直接写出代数式的最小值是.22.如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含S的式子表示)(2)当n=k时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?23.在△ABC中,DE垂直平分AB,分别交AB,BC于点D,E,MN垂直平分AC,分别交AC,BC于点M,N.(1)如图①,若∠BAC=110°,求∠EAN的度数;(2)如图②,若∠BAC=80°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.参考答案与试题解析一.选择题(共10小题)1.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:根据轴对称的性质可知,台球走过的路径为:所以球最后将落入的球袋是1号袋,故选:A.3.解:∵∠BAC=112°,∴∠C+∠B=68°,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=68°,∴∠EAF=44°,故选:D.4.解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°﹣,∴∠ACB'=∠EB'O﹣∠COB'=180°﹣﹣90°=90°﹣,∴∠ACB=∠ACB'=90°﹣,故选:B.5.解:点M(﹣3,﹣6)关于y轴对称点的坐标为(3,﹣6),故选:A.6.解:∵点A(m,3)与点B(4,n)关于y轴对称,∴m=﹣4,n=3,∴(m+n)2019=(﹣4+3)2019=﹣1,故选:B.7.解:∵直线m上各点的横坐标都是2,∴直线为:x=2,∵点P(a,5)在第二象限,∴a到2的距离为:2﹣a,∴点P关于直线m对称的点的横坐标是:2﹣a+2=4﹣a,故P点对称的点的坐标是:(﹣a+4,5).故选:D.8.解:∵BI平分∠DBC,∴∠DBI=∠CBI,∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理,CE=EI.∴△DBI和△EIC是等腰三角形;∴△ADE的周长=AD+DI+IE+EA=AB+AC=8;∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠IBC+∠ICB=65°,∴∠BIC=115°,故选项A,C,D正确,故选:B.9.解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.10.解:连接AA1.由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB =DA 1,∴∠BA 1D =∠B ,∴∠ADA 1=2∠B ,又∵∠ADA 1=2∠ADE ,∴∠ADE =∠B ,∴DE ∥BC ,∴AA 1⊥BC ,∴AA 1=2,∴h 1=2﹣1=1,同理,h 2=2﹣,h 3=2﹣×=2﹣…∴经过第n 次操作后得到的折痕D n ﹣1E n ﹣1到BC 的距离h n =2﹣.∴h 2018=2﹣, 故选:A .二.填空题(共4小题)11.解:电子表的实际时刻是10:51.故答案为:10:51.12.解:∵∠BAC =90°,D 为BC 的中点,∴AD =CD ,∴∠DAC =∠C =60°,∴∠EAG =120°,∴∠AGE =180°﹣120°﹣45°=15°,∴∠CGF =∠QGE =15°,故答案为:15.13.解:设∠A =x .∵AB =BC =CD =DE =EF =FG ,∴根据等腰三角形的性质和三角形的外角的性质,得∠CDB =∠CBD =2x ,∠DEC =∠DCE =3x ,∠DFE =∠EDF =4x ,∠FGE =∠FEG =5x ,则180°﹣5x =125°,解,得x=11°.故答案为:11.14.解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A点与第三次变换的位置相同,在第二象限,坐标为(﹣a,b).故答案为:(﹣a,b)三.解答题(共9小题)15.解:如图,作AM⊥BC于M.∵AC的中垂线交BC于E,∴EA=EC,∴∠C=∠EAC=30°,∴∠AEM=∠EAC+∠C=60°,∵∠AME=90°,AE=EC=4,∠MAE=30°,∴EM AE=2,AM=2,∵∠B=45°,∠AMB=90°,∴BM=AM=2,∴BC=BM+EM+EC=6+2.16.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.17.解:(1)如图所示:(2)如图所示,△A1B1C1即为所求;(3)点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(﹣4﹣a,b).故答案为:(﹣4﹣a,b).18.证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.19.解:(1)∵△ABC是正三角形,∴∠A=∠B=∠C,∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∴∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形;(2)根据题意△PBM≌△MCN≌△NAP,∴PA=BM=CN,PB=MC=AN,∴BM+PB=AB=12cm,∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴2PB=BM,∴2PB+PB=12cm,∴PB=4cm,∴MC=4cm.20.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)连接DF,∵DF∥BC,∴∠FDE=∠DEB,∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,∵∠B=60°,∠DEF=60°,∴∠1=∠3.21.解:(1)设CD=x,则BC=8﹣x,在Rt△ABC中,AC==,在Rt△CDE中,CE==,所有AC+CD=AC=+;(2)当A、C、E共线时,AC+CE的值最小,即AC+CE的最小值为AE的长,即C点为AE与BD的交点,作EF⊥AB于F,如图,则BF=DE=1,EF=BD=8,在Rt△AEF中,AE==10,即AC+CE的最小值为10,故答案为10;(3)如图2,AB=3,DE=2,BD=12,代数式的最小值为AE的长,即它的最小值为13.故答案为13.22.解:(1)当n=5时,共有3×(5﹣2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=,∵大三角形的面积是S,∴每个小三角形的面积为S,这些小等边三角形的面积和为S;(2)由(1)可知,当n=k时,共有3×(k﹣2)=3(k﹣2),每个小等边三角形的面积为S,每个小三角形的面积和为S.故答案为:(1)9,S,S;(2)3(k﹣2),S,S;(3)当S=100,n=10时,3(n﹣2)=3×(10﹣2)=24(个),S =×100=24.即共向外作出了24个小等边三角形,这些小等边三角形的面积和为24. 23.解:(1)∵DE 垂直平分AB ,∴AE =BE ,∴∠BAE =∠B ,同理可得∠CAN =∠C ,∴∠EAN =∠BAC ﹣∠BAE ﹣∠CAN =∠BAC ﹣(∠B +∠C ), 在△ABC 中,∠B +∠C =180°﹣∠BAC =70°,∴∠EAN =110°﹣70°=40°.(2)∵DE 垂直平分AB ,∴AE =BE ,∴∠BAE =∠B ,同理可得∠CAN =∠C ,∴∠EAN =∠BAE +∠CAN ﹣∠BAC =(∠B +∠C )﹣∠BAC , 在△ABC 中,∠B +∠C =180°﹣∠BAC =100°,∴∠EAN =100°﹣80°=20°.(3)当0°<α<90°时,∠EAN =180°﹣2α;当90°<α<180°时,∠EAN =2α﹣180°.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【答案】C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.2.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【答案】D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.3.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.4.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .5 【答案】C【解析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.5.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减,∴k <0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.6.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.【答案】C【解析】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.7.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【答案】C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.8.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°【答案】A【解析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.9.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.22C.2 D.2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.10.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A .AC=ABB .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D【答案】B 【解析】先利用垂径定理得到弧AD=弧BD ,然后根据圆周角定理得到∠C=12∠BOD ,从而可对各选项进行判断.【详解】解:∵直径CD ⊥弦AB ,∴弧AD =弧BD ,∴∠C=12∠BOD . 故选B .【点睛】 本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(本题包括8个小题)11.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_____ °.【答案】1【解析】根据△ABC 中DE 垂直平分AC ,可求出AE=CE ,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【详解】∵DE 垂直平分AC ,∠A=30°,∴AE=CE ,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.12.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭_______. 【答案】33x y -【解析】根据同底数幂的乘法法则计算即可.【详解】()22133x y xy ⎛⎫-⋅ ⎪⎝⎭22133x y xy =-⨯⋅ 33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.13.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.【答案】1【解析】在△AGF 和△ACF 中,{GAF CAFAF AF AFG AFC∠=∠=∠=∠,∴△AGF ≌△ACF ,∴AG=AC=4,GF=CF ,则BG=AB−AG=6−4=2.又∵BE=CE ,∴EF 是△BCG 的中位线,∴EF=12BG=1. 故答案是:1.14.分解因式a 3﹣6a 2+9a=_________________.【答案】a (a ﹣3)1 .【解析】a 3﹣6a 1+9a=a (a 1﹣6a+9)=a (a ﹣3)1.故答案为a (a ﹣3)1.15.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm .【答案】1.【解析】解:设圆锥的底面圆半径为r ,根据题意得1πr=0208161π⨯, 解得r=1,即圆锥的底面圆半径为1cm .故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.【答案】16【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21=126, 故答案为16. 17.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =k x (k≠0,x >0)的图象经过顶点C 、D ,若点C 的横坐标为5,BE =3DE ,则k 的值为______.【答案】154【解析】过点D 作DF ⊥BC 于点F ,由菱形的性质可得BC =CD ,AD ∥BC ,可证四边形DEBF 是矩形,可得DF =BE ,DE =BF ,在Rt △DFC 中,由勾股定理可求DE =1,DF =3,由反比例函数的性质可求k 的值.【详解】如图,过点D 作DF ⊥BC 于点F ,∵四边形ABCD 是菱形,∴BC =CD ,AD ∥BC ,∵∠DEB =90°,AD ∥BC ,∴∠EBC =90°,且∠DEB =90°,DF ⊥BC ,∴四边形DEBF 是矩形,∴DF =BE ,DE =BF ,∵点C 的横坐标为5,BE =3DE ,∴BC =CD =5,DF =3DE ,CF =5﹣DE ,∵CD 2=DF 2+CF 2,∴25=9DE 2+(5﹣DE)2,∴DE =1,∴DF =BE =3,设点C(5,m),点D(1,m+3),∵反比例函数y =k x 图象过点C ,D , ∴5m =1×(m+3),∴m =34, ∴点C(5,34), ∴k =5×34=154, 故答案为:154 【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE 的长度是本题的关键. 18.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.【答案】(14+23)米 【解析】过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F .∵CD=8,CD 与地面成30°角,∴DE=12CD=12×8=4, 根据勾股定理得:CE=22CD DE -=2242-2284-=43. ∵1m 杆的影长为2m ,∴DE EF =12, ∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+43+8=(28+43).∵AB BF =12, ∴AB=12(28+43)=14+23. 故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB 的影长若全在水平地面上的长BF 是解题的关键.三、解答题(本题包括8个小题)19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.【答案】绳索长为20尺,竿长为15尺.【解析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?【答案】 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人),答:在课堂中能“独立思考”的学生约有18000人.21.解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.【答案】﹣2,﹣1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,222.如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【答案】(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(21)、(2,1)、(6,-3)或(6,-3).【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.【详解】解:(1)由题意得:()121931b b c ⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22b c =⎧⎨=⎩, ∴抛物线的解析式为y=-x 2+2x+2;(2)∵由y=-x 2+2x+2得:当x=0时,y=2,∴B (0,2),由y=-(x-1)2+3得:C (1,3),∵A (3,-1),∴AB=32,BC=2,AC=25,∴AB 2+BC 2=AC 2,∴∠ABC=90°,∴△ABC 是直角三角形;(3)①如图,当点Q 在线段AP 上时,过点P 作PE ⊥x 轴于点E ,AD ⊥x 轴于点D∵S △OPA =2S △OQA ,∴PA=2AQ ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=12,∴P(1+2,1)或(1-2,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±6,∴P(1+6,-3),或(1-6,-3),综上可知:点P的坐标为(1+2,1)、(1-2,1)、(1+6,-3)或(1-6,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.23.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分的面积为8833π-.【解析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O 的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴22228443-=-=DO OC∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°,∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π, ∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π, ∴阴影部分的面积为83﹣83π.24.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y 件与销售单价x 元之间的函数关系式;写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【答案】(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解析】(1)销售量y 为200件加增加的件数(80﹣x )×20;(2)利润w 等于单件利润×销售量y 件,即W=(x ﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x 2+3000x ﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W 随x 的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800,所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x ﹣60)y=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:W=﹣20x 2+3000x ﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x 2+3000x ﹣108000,对称轴为x=﹣30002(20)⨯-=75, ∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W 随x 的增大而减小,∴x=76时,W 有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.25.2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).【答案】(1)600人(2)1 3【解析】(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A 的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)120200600(36090110)⨯=--(人),∴最喜欢方式A的有600人(2)列表法:A B CA A,A A,B A,CB B,A B,B B,CC C,A C,B C,C 树状法:∴P(同一种购票方式)13=【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.26.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?【答案】12【解析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-【答案】A【解析】由题意(),3A m m -,因为O 与反比例函数k y x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】函数3y x =-与k y x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m - O 与反比例函数k y x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,31m m ∴=-,12m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=- 故选:A .【点睛】 本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称. 2.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是( )A .关于x 轴对称B .关于y 轴对称C .绕原点逆时针旋转90D .绕原点顺时针旋转90【答案】C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.3.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%【答案】B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.,则它的内接正六边形ABCDEF的面积是()4.如图,已知O的周长等于6cmA.934B.2734C.2732D.273【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=33cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.5.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道【答案】C【解析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.6.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )A.3﹣6或1+6B.3﹣6或3+6C.3+6或1﹣6D.1﹣6或1+6【答案】C【解析】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-6或h=1+6(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+6或h=3-6(舍).综上,h的值为1-6或3+6,故选C.点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.7.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°【答案】A【解析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.8.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤【答案】B【解析】试题分析: ①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化; ③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变; ④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线9.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A 【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【答案】B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义二、填空题(本题包括8个小题)11.12019的相反数是_____.【答案】1 2019【解析】根据只有符号不同的两个数互为相反数,可得答案.【详解】12019的相反数是−12019.故答案为−1 2019.【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.12.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币.平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.【答案】21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人2000100=21元.13.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMN S;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.【答案】①③④【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE ,∴DF=AB=CD ,∴CF=3DF ,故②错误;∵BM=MN ,CM=2EM ,∴△BEM =S △EMN =S △CBE ,∵BE=CD ,CF=CD , ∴=,∴S △EFC =S △CBE =S △MNE ,∴S △ECF =,故③正确;∵BM=NM ,EM ⊥BD ,∴EB=EN ,∴∠ENB=∠EBN ,∵CD ∥AB ,∴∠ABN=∠CDB ,∵∠DNF=∠BNE ,∴∠CDN=∠DNF ,∴△DFN 是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.14.分式方程32xx 2--+22x-=1的解为________. 【答案】x 1=【解析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.15.若分式15x-有意义,则实数x的取值范围是_______.【答案】【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式15x-有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.16.一个凸多边形的内角和与外角和相等,它是______边形.【答案】四【解析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.17.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)【答案】94π.【解析】如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,。
2019中考数学一轮复习单元检测试卷第十九单元一次函数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.在函数y=中,自变量x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣32.变量x与y之间的关系是y=2x﹣3,当因变量y=6时,自变量x的值是()A.9B.15C.4.5D.1.53.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.4.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y25.若函数y=kx(k≠0)的值随自变量的增大而增大,则函数y=x+2k的图象大致是()A.B.C.D.6.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A.y=3x﹣2B.y=x﹣C.y=x﹣1D.y=3x﹣37.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④8.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=60,则b=.其中说法正确的是()A .①②③B .②③④C .①②④D .①③④9.如图,已知直线l :,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A .(0,128)B .(0,256)C .(0,512)D .(0,1024) 10.如图,等边三角形和正方形的边长均为a ,点B ,C ,D ,E 在同一直线上,点C 与点D重合.△ABC 以每秒1个单位长度的速度沿BE 向右匀速运动.当点C 与点E 重合时停止运动.设△ABC 的运动时间为t 秒,△ABC 与正方形DEFG 重叠部分的面积为S ,则下列图象中,能表示S 与t 的函数关系的图象大致是( )A .B .C. D.二、填空题(本大题共4小题,每小题5分,共20分)11.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:由表格中y 与t 的关系可知,当汽车行驶 小时,油箱的余油量为0.12.若点(a ,3)在函数y =2x ﹣3的图象上,a 的值是 .13.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,则∠AOC 的角平分线所在直线的函数关系式为 .14.点A (m ,n )为直线y =﹣x +4上一动点,且满足﹣4<m <4,将O 点绕点B (﹣,﹣)逆时针旋转90°得点C ,连接AC ,则线段AC 长度的取值范围是 . 三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.已知y 与x +2成正比,当x =4时,y =4.(1)求y 与x 之间的函数关系式;(2)若点(a ,3)在这个函数图象上,求a 的值.16.已知一次函数y=kx+b的图象如图所示(1)求k、b的值;(2)在平面直角坐标系内画出函数y=bx+k的图象;(3)利用(2)中你所画的图象,写出0<x<1时,y的取值范围.17.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.18.如图,在平面直角坐标系中,A(4,0),B(0,2),C(4,4).已知四边形ABCD 为菱形,其中AB与BC为一组邻边.(1)请在图中作出菱形ABCD,并求出菱形ABCD的面积;(2)过点A的直线l:y=x+b与线段CD相交于点E,请在图中作出直线l的图象,并求出△ADE的面积.19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 米.(2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的汽车速度最快,速度在安全限度内吗?20.如图,在平面直角坐标系xOy 中,直线y =﹣x +4与x 轴、y 轴分别交于点A 、点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长;(2)求点C 和点D 的坐标;(3)y 轴上是否存在一点P ,使得S △PAB =S △OCD ?若存在,直接写出点P 的坐标;若不存在,请说明理由.21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示.(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价﹣成本)(2)分别求出y1、y2与x之间的函数关系式;(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.22.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)23.阅读下列两段材料,回答问题:材料一:点A(x1,y1),B(x2,y2)的中点坐标为(,).例如,点(1,5),(3,﹣1)的中点坐标为(,),即(2,2).材料二:如图1,正比例函数l1:y=k1x和l2:y=k2x的图象相互垂直,分别在l1和l2上取点A,B,使得AO=BO.分别过点A,B作x轴的垂线,垂足分别为点C,D.显然,△AOC≌△OBD.设OC=BD=a,AC=OD=b,则A(﹣a,b),B(b,a).于是k1=﹣,k2=,所以k1•k2的值为一个常数.一般地,一次函数y=k1x+b1,y=k2x+b2可分别由正比例函数l1,l2平移得到.所以,我们经过探索得到的结论是:任意两个一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2的值为一个常数.(1)在材料二中,k1•k2=(写出这个常数具体的值);(2)如图2,在矩形OBAC中A(4,2),点D是OA中点,用两段材料的结论,求点D的坐标和OA的垂直平分线l的解析式;(3)若点C′与点C关于OA对称,用两段材料的结论,求点C′的坐标.参考答案与试题解析一.选择题(共10小题)1.解:在函数y=中,x+3≥0,解得:x≥﹣3,故自变量x的取值范围是:x≥﹣3.故选:B.2.解:当y=6时,2x﹣3=6,解得:x=4.5,故选:C.3.解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.4.解:∵直线y=﹣x,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.5.解:∵正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大,∴k>0,∵一次函数y=x+2k,∴k′=1>0,b=2k>0,∴此函数的图象经过一、二、三象限.故选:A.6.解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x﹣1.故选:C.7.解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.8.解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=60,∴b=,结论④正确.故选:D.9.解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=,∵A 1B ⊥l ,∴∠ABA 1=60°,∴A 1O =4,∴A 1(0,4),同理可得A 2(0,16),…∴A 4纵坐标为44=256,∴A 4(0,256).故选:B .10.解:如图所示,设△ABC 平移中与DG 交于点H ,当t ≤a 时,S =S △HCD =CD •HD =t •t •tan60°=t 2,该函数为开口向上的抛物线;当t >a 时,S =S 四边形ACDH =S △ABC ﹣S △BDH=﹣(a ﹣t )(a ﹣t )tan60°═﹣(a ﹣t )2,该函数为开口向下的抛物线;故选:C.二.填空题(共4小题)11.解:由题意可得:y=100﹣8t,当y=0时,0=100﹣8t解得:t=12.5.故答案为:12.5.12.解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.13.解:如图所示,延长BA交y轴于D,则BD⊥y轴,∵点A的坐标为(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4),设∠AOC的角平分线所在直线的函数关系式为y=kx,∵菱形OABC中,∠AOC的角平分线所在直线经过点B,∴4=8k,即k=,∴∠AOC的角平分线所在直线的函数关系式为y=x,故答案为:y=x.14.解:如图1中,∵A(m,n),∴点A关于原点对称点A′(﹣m,﹣n),∴OA′的中点B(﹣,﹣);∴OA=2OB=2BC,∴tan∠CAB==,∴点A在运动过程中,△ABC的形状相同,∴AB的值最大时,AC的值最大,AB的值最小时,AC的值最小,当点A的坐标为(﹣4,8)时,AB的值最大,此时B(2,﹣4),∴AB==6,∴BC=AB=2,∴AC==10.如图2中,当直线AB⊥直线y=﹣x+4时,AB的值最小,此时直线AB的解析式为y=x,由,解得,∴A(2,2),B(﹣1,﹣1),∴AB==3,∴BC=AB=,∴AC==2,综上所述,线段AC长度的取值范围是2≤AC<10,故答案为2≤AC<10.三.解答题(共9小题)15.解:(1)设y=k(x+2),∵当x=4时,y=4,∴k(4+2)=4,∴k=,∴y与x之间的函数关系式为y=(x+2)=x+;(2)∵点(a,3)在这个函数图象上,∴a+=3,∴a=2.5.16.解:(1)A(0,﹣2),B(1,0).将A(0,﹣2),B(1,0)两点代入y=kx+b中,得b=﹣2,k﹣2=0,k=2.(2)对于函数y=﹣2x+2,列表:图象如下:(3)由图象可得:当0<x<1时,y的取值范围为:0<y<2.17.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.18.解:(1)∵点A的坐标为(4,0),点B的坐标为(0,2),点C的坐标为(4,4),∴点D的坐标为(4+4﹣0,0+4﹣2),即(8,2).作出菱形ABCD,如图所示.S=AC•BD=×8×4=16.菱形ABCD(2)将A (4,0)代入y =x +b ,得:0=×4+b ,∴b =﹣6.∵点C 的坐标为(4,4),点D 的坐标为(8,2),∴直线CD 的解析式为y =﹣x +6.联立直线l 与直线CD 的解析式成方程组,得:,解得:,∴点E 的坐标为(6,3),∴S △ADE =×2×3+×(3+2)×2﹣×4×2=4.19.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)小明在书店停留了12﹣8=4(分钟),故答案为:4;(3)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14分钟,故答案为:2700,14;(4)当时间在0~6分钟内时,速度为:1200÷6=200米/分钟,当时间在6~8分钟内时,速度为:(1200﹣600)÷(8﹣6)=300米/分钟,当时间在12~14分钟内时,速度为:(1500﹣600)÷(14﹣12)=450米/分钟, ∵450>300,∴在整个上学途中12~14分钟时间段小明的汽车速度最快,速度不在安全限度.20.解:(1)令x =0得:y =4,∴B (0,4).∴OB =4令y =0得:0=﹣x +4,解得:x =3,∴A (3,0).∴OA =3.在Rt △OAB 中,AB ==5.∴OC =OA +AC =3+5=8,∴C (8,0).设OD =x ,则CD =DB =x +4.在Rt △OCD 中,DC 2=OD 2+OC 2,即(x +4)2=x 2+82,解得:x =6,∴D (0,﹣6).(3)∵S △PAB =S △OCD ,∴S △PAB =××6×8=12.∵点Py 轴上,S △PAB =12,∴BP •OA =12,即×3BP =12,解得:BP =8,∴P 点的坐标为(0,12)或(0,﹣4).21.解:(1)由图可知,6月份每千克售价为3元,成本为1元,∴每千克收益为3﹣1=2元;(2)设y 1=kx +b ,将(3,5)和(6,3)代入得,,解得.∴y 1=.设y 2=a (x ﹣6)2+1,把(3,4)代入得,4=a (3﹣6)2+1,解得a =.∴y 2=(x ﹣6)2+1,即y 2=x 2﹣4x +13.(3)收益W =y 1﹣y 2==(x﹣5)2+,∵a=<0,=.∴当x=5时,W最大值故5月出售每千克收益最大,最大为.22.解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;=﹣80×5+1280=880,(3)当5≤x≤10时,当x=5时,w大当10<x≤17时,当x=17时,w=56×17﹣80=872,大∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.23.解:(1)∵k1=﹣,k2=,∴k1•k2=﹣•=﹣1.故答案为:﹣1.(2)∵点O的坐标为(0,0),点A的坐标为(4,2),点D是OA中点,∴点D的坐标为(2,1).∵点A的坐标为(4,2),∴直线OA的解析式为y=x.∵直线l⊥直线OA,∴设直线l的解析式为y=﹣2x+m.∵直线l过点D(2,1),∴1=﹣4+m,解得:m=5,∴OA的垂直平分线l的解析式为y=﹣2x+5.(3)∵点A的坐标为(4,2),四边形OBAC为矩形,∴点C的坐标为(0,2).设直线CC′的解析式为y=﹣2x+n,∵直线CC′过点C(0,2),∴n=2,即直线CC′的解析式为y=﹣2x+2.联立直线CC′和OA的解析式成方程组,得:,解得:,∴点E的坐标为(,).∵点E为线段CC′的中点,∴点C′的坐标为(×2﹣0,×2﹣2),即(,﹣).智浪教育—普惠英才文库。