生活垃圾机械炉排焚烧炉技术介绍
- 格式:ppt
- 大小:468.50 KB
- 文档页数:20
焚烧炉技术方案一、引言焚烧炉技术是一种处理固体废物的方法,经过燃烧将废物转化为能量和渣滓,从而实现废物的有效处置。
本文将就焚烧炉技术的原理、应用和优势进行探讨。
二、焚烧炉技术原理焚烧炉技术利用高温将固体废物燃烧,其中氧气是供给燃烧反应所必需的。
燃烧过程中,废物中的有机物会被氧化成水蒸气和二氧化碳,并释放出热能。
在适当的操作控制下,焚烧炉还可以回收能源,如热能和电能。
三、焚烧炉技术应用1. 固体废物处理:焚烧炉技术能够处理各类固体废物,如生活垃圾、医疗废物、工业废渣等,有效减少废物对环境的影响。
2. 能源回收利用:焚烧炉可以将废物燃烧产生的热能转化为蒸汽或热水,用于供暖或发电。
3. 有害物质处理:某些固体废物中可能含有有害物质,焚烧炉能够将这些有害物质转化为无害的渣滓,减少对环境和健康的危害。
四、焚烧炉技术的优势1. 减少废物体积:焚烧炉技术经过燃烧将废物转化为渣滓,大大减少了废物的体积。
2. 能源回收利用:焚烧炉可将废物燃烧产生的能源转化利用,减少对传统能源的依赖。
3. 环境友好:通过恰当的控制和处理,焚烧炉技术能够有效减少废气和废水的排放,保护环境。
4. 安全可靠:焚烧炉工艺经过多年发展和优化,安全控制设备完善,操作稳定可靠。
五、焚烧炉技术方案案例以某城市垃圾焚烧发电工程为例,该工程采用先进的焚烧炉技术,实现了垃圾的高效处理和能源回收利用。
该工程主要步骤包括:1. 垃圾存放和运输:将垃圾按照分类和规定要求存放,并采用密封的运输方式,防止二次污染。
2. 炉膛燃烧:将垃圾送入焚烧炉,经过高温燃烧将废物转化为热能和渣滓。
3. 能源回收利用:热能通过热交换器转化为蒸汽,驱动汽轮机发电,产生电能。
4. 渣滓处理:焚烧后得到的渣滓经过处理,如磁选、脱水等,转化成可回收物和填埋物。
5. 废气处理:通过烟气净化设备,对燃烧过程中产生的废气进行除尘和脱硫处理,达到环保要求。
六、总结焚烧炉技术作为一种现代化的废物处理方法,具有很大的潜力和优势。
机械炉排焚烧炉德国马丁公司sity2000炉排(见图1)为逆推炉排,炉排与炉排片均向下倾斜,整个炉排无阶段性落差,送气孔设在炉排片两侧,有自清扫作用,可动炉排片与固定炉排片呈阶梯式纵向交互配置。
炉排上垃圾靠重力向下方滑落,底层的垃圾受可动炉排片逆向运动的推力而涌向上层,达到翻搅的作用。
炉排片分为固定和活动两种,间隔排列。
当一排活动炉排片向前运动时,被固定炉排片隔开的相邻活动炉排片则向后退,这样的设计保证使垃圾得到很好地搅拌和混合。
由于炉排的特殊运动,可使炉排上的垃圾层有规律地形成小的高峰和低谷,使垃圾不停翻动,达到与空气的充分接触,完全燃烧。
炉排的长度是固定的,宽度可根据垃圾燃烧量和热负荷调节。
由于每一排炉排的片数是有限的,所以,当机械负荷或热负荷较高时,炉排的列数则要增加。
垃圾在焚烧炉内燃烧过程分为三阶段:干燥段、燃烧段和燃尽段。
各段的空气供应量和运行速度是可以调节的。
(1)干燥段:利用炉壁和火焰的辐射热,垃圾从表面开始干燥,部分产生表面的燃烧。
干燥垃圾的着火温度为200?左右,垃圾在干燥段上的滞留时间为30 min。
(2)燃烧段:这是燃烧的中心部份。
垃圾在干燥段干燥、热分解产生的可燃性气体,在本段产生旺盛的火焰。
垃圾在燃烧段滞留时间约30min。
为了提高燃烧效果,均匀地供应垃圾、垃圾的搅拌混合和适当地分配空气等极为重要。
(3)燃尽段:垃圾在燃尽段上滞留时间约1h。
保证垃圾在燃尽段有充分的滞留时间,可将炉渣的热损失降至1,,2, 。
该炉排主要特点:(1)单台焚烧炉垃圾处理量120,720t,天。
(2)焚烧性能良好,炉底灰渣未燃尽率0.7,,2,;烟气中飞灰含碳量<3g/m3。
(3)运行过程中燃烧参数稳定。
(4)炉排的空气冷却高效。
(5)维护成本低,炉排有效寿命>10年,可用率>98,。
2 西格斯多级焚烧炉排西格斯多级焚烧炉排是唯一采用垃圾输送和搅拌,鼓风相互独立设计的垃圾集中焚烧系统。
往复式机械炉排炉原理
往复式机械炉排炉是一种利用机械装置将固体废弃物进行高温焚烧处理的设备。
其工作原理如下:
1. 废弃物装载:首先,将固体废弃物放入炉膛中,炉膛通常由耐高温材料制成,以承受高温燃烧。
2. 炉排运动:炉膛内部有一排往复运动的炉排。
这些炉排通过机械装置在炉膛内来回移动,使废弃物在炉膛中不断翻动,以便均匀加热和燃烧。
3. 燃烧过程:在炉排的移动下,废弃物开始燃烧。
燃烧过程中,废弃物中的有机物质被氧化,转化为热量。
同时,废弃物中的无机物质被熔融或气化。
4. 废气和废渣处理:燃烧产生的废气通过排气系统进行处理,去除有害物质后排放。
而燃烧后的废渣则通过底部排出。
5. 温度控制:炉膛内部设有温度传感器,可以实时监测炉内的温度,并通过控制系统调整炉排的运动和燃烧条件,以保证燃烧效率和废弃物的完全燃烧。
6. 自动化操作:整个燃烧过程可以实现自动化操作,减少人工干预,提高工作效率。
这就是往复式机械炉排炉的基本工作原理。
机械炉排炉机械炉排炉是以机械式的炉排块构成炉床,靠炉排间的相对运动使垃圾不断翻动、搅拌并推向前进。
正常运行时,炉温维持在850℃~950℃,垃圾进入炉内与热空气接触、升温、干燥、着火、燃烬。
一般情况下,燃烧发出的热量可以维持炉温,垃圾热值偏低的情况下,需要喷入燃料油作为辅助燃料。
机械炉排炉是目前世界上技术成熟、处理规模较大的生活垃圾焚烧炉,在欧美等国家得到广泛使用,单台最大处理量已经达到1200t/d。
炉排炉的优点:▪单台炉的处理量大,国内目前已有800t/d的焚烧炉在运行。
▪垃圾在炉内分布均匀,料层稳定,燃烧完全。
运行时可视炉内垃圾焚烧状况调整。
▪可调节炉排转速,控制垃圾在炉内的停留时间,使其燃烬。
▪由于鼓风机压头小,风机所需功率小,故动力消耗少。
▪因为垃圾在炉排上燃烧,而且不掺燃煤,所以烟气中粉尘含量低,减轻了除尘器的负担,降低了运行成本。
▪炉排炉具有进料口宽,适合我国的生活垃圾分类收集规范化程度差的特点,无需对垃圾分选和破碎;采用层燃方式,烟气净化系统进口粉尘浓度低,降低了烟气净化系统和飞灰处理费用;一般情况下,无需添加辅助燃料即可维持燃烧温度850℃2秒以上。
炉排炉的缺点:▪由于活动炉排和固定炉排等关键部件由耐热合金钢制造,所以设备造价较高。
▪由于燃烧速度慢,炉床的负荷小,所以炉子的体积较大,厂房面积增大。
同时炉体散热损失增加。
机械炉排炉早期在煤的燃烧中得到广泛应用,后期在垃圾的焚烧历程中发展成为技术最成熟、处理规模较大的生活垃圾焚烧炉。
机械炉排炉炉排一般分为干燥段、燃烧段和燃烬段等。
生活垃圾直接接触在炉排上,同时靠炉排间的相对运动使垃圾不断翻动、搅拌并推向前进。
正常运行时,垃圾进入炉内各分区与热空气接触并依次历经升干燥、挥发、燃烧、燃烬等各个阶段。
炉膛温度维持在850℃~950℃,一般情况下,燃烧发出的热量可以维持炉温。
机械炉排炉的关键设备是焚烧炉排,各种炉排炉的最大区别也在于炉排的结构型式和运动方式,国内几种应用最广的型式有:逆推式炉排炉、顺推式炉排炉及往复翻动式炉排炉等。
机械炉排式生活垃圾焚烧炉技术分析机械炉排式垃圾焚烧发电技术具有多种优点,适宜大规模处理未经分类的高热值城市生活垃圾。
本文介绍了机械炉排式焚烧炉的国内外技术现状、发展趋势和分类,总结分析了常用机械炉排式焚烧炉的主要技术特点;详述了5种常用机械炉排式生活垃圾焚烧炉的工作原理,并对其功能开展技术分析和比照。
这对于机械炉排式生活垃圾焚烧炉的设计、应用、研发和性能优化等具有重要的参考价值。
20**年,我国城市生活垃圾的生产量已达1.9亿t,并仍以8%左右的速度递增,与日俱增的城市生活垃圾已经成为困扰城市发展、污染城市环境、影响居民生活的社会问题。
传统的填埋、堆肥等垃圾处理工艺已经不能满足日常垃圾处理的要求,有效实现垃圾减量化、无害化和资源化的垃圾焚烧处理工艺是目前解决垃圾围城问题的首选方案。
1机械炉排式焚烧炉技术现状机械炉排式垃圾焚烧发电技术具有处理量大、运行可靠度较高、处理周期短、减量化显著、无害化彻底以及可回收垃圾焚烧余热等优点,适宜大规模处理未经分类的高热值城市生活垃圾。
在全球已建的2300多座生活垃圾焚烧发电厂中,机械焚烧炉使用率在80%以上,是目前国内外城市生活垃圾焚烧发电处理的最正确处理方式。
1.1国外发展现状机械炉排焚烧技术起源于欧洲和美国,在垃圾焚烧领域得到广泛利用,已成为垃圾焚烧的主要炉型,通过多年的积累,单台最大处理量已经到达1200t∕d o德国马丁和日本三菱公司、日立造船和德国斯坦米勒公司、比利时西格斯焚烧发电设备的技术水平均处在世界前列,其产品具有燃烧稳定、自动化程度高、燃烧充分的特点。
1.2国内发展现状国内生产制造机械炉排焚烧发电设备的企业主要有** 三峰、光大国际和绿色动力等,但单台焚烧炉处理规模相对较小,而且燃烧效果不甚理想。
国内大型千吨以上级垃圾焚烧发电厂以引进国外技术和设备为主,需要花费大量外汇引进技术和垃圾焚烧炉等核心设备,但设备费及运行成本均较高,而且其对我国城市混合收集的生活垃圾低热值、高水分等特点适应性低。
焚烧炉技术方案1. 引言焚烧炉是一种用于处理各种废弃物的技术设备,通过高温燃烧废弃物,将其转化为热能和灰渣,从而达到减少废弃物量、无害化处理和能源回收的目的。
本文将介绍一种焚烧炉技术方案,旨在提高废弃物处理效率和降低环境影响。
2. 技术原理焚烧炉技术的基本原理是在高温环境下将废弃物完全氧化燃烧,通过控制氧气供给和燃料投入,可有效降低废弃物产生的有害气体排放。
同时,利用燃烧产生的高温热能可以发电或进行其他能源回收,实现资源的最大化利用。
3. 设备设计焚烧炉的主要设备包括炉膛、燃烧器、烟气处理系统和余热回收系统。
炉膛是废弃物进行燃烧的空间,其结构需考虑废弃物的特性和燃烧过程中产生的温度和压力。
燃烧器负责提供燃烧所需的氧气和燃料,其设计应考虑燃料的种类和热值。
烟气处理系统用于净化废弃物燃烧产生的烟气,降低有害气体的排放浓度。
余热回收系统则可以利用燃烧产生的高温烟气中的热能,进行发电或供热。
4. 控制与监测系统焚烧炉技术方案应配备先进的控制与监测系统,用于实时监测和控制炉膛温度、烟气排放浓度、氧气供给和热能回收等参数。
通过精确的数据采集和分析,可以及时调整设备运行参数,保证焚烧过程的安全和稳定,减少环境污染。
5. 应用案例焚烧炉技术已经在许多行业得到广泛应用。
例如,在城市生活垃圾处理中,焚烧炉可以将废弃物减量处理,同时发电回收能源;在化工和医药行业,焚烧炉可以处理有毒废弃物,减少对环境的影响。
应根据不同的废弃物特性和处理需求进行技术方案的调整和优化。
6. 环境影响评估焚烧炉技术的应用必须进行环境影响评估,及时发现和解决潜在的污染问题。
评估内容包括废弃物的分类和处理能力、废气和废水排放标准、噪音控制等方面。
通过合理设计和控制,可以确保焚烧炉技术的环保性和可持续性。
7. 结论焚烧炉技术方案是一种高效、安全和环保的废弃物处理方法。
通过合理的设备设计和控制系统,可以实现废弃物的减量处理、无害化处理和能源回收。
然而,在应用过程中仍需注意环境影响和安全风险的评估和管理,以确保焚烧炉技术的可持续发展。