第九章 非参数检验
- 格式:ppt
- 大小:147.00 KB
- 文档页数:17
非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。
二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。
2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。
3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。
4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。
三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。
2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。
3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。
4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。
5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。
第九章非参数检验(医学统计之星)上次更新日期:非参数统计是统计分析的重要组成部分。
可是与之很不相称的是它的理论发展远远不及参数检验完善,因而比较完善的可供使用的方法也不多。
在SAS中,非参数统计主要由UNIVARIATE过程、MEANS过程和NPAR1WAY过程来实现,前两者在前面的章节中已经介绍,它们可以进行配对设计差值的符号秩和检验(WILCOXON配对法);后者是一个单因素的非参数方差分析过程,可进行成组设计的两样本(WILCOXON法)或多样本比较(KRUSKAL-WALLIS法)的秩和检验。
本章将主要介绍NPAR1WAY过程。
由于在理论上还有争议,作为权威性的统计软件,SAS不提供非参检验两两比较的方法。
据我所知,其余统计软件里也只有PEMS提供这一功能(因为她是医统·医百的配套软件,而非参两两比较是写入了该书的)。
如果你需要这一结果,那么恐怕只有手算了。
9.0.1 语法格式NPAR1WAY过程不能处理按频数输入的资料。
这意味着如果你的数据是以频数方式输入的,那么除非你将资料想办法转换成按例记录的资料,否则SAS 无法处理。
有的同学将“NPAR1WAY”打成了“NPARLWAY”,可以这样来记:“NPAR”即“非参”的英文缩写,“WAY”是维数,更明确的说是因素的意思,而“1WAY”就代表一个因素,合起来“NPAR1WAY”说的是“单因素的非参数检验”。
怎么样,明白这个过程在做什么了吧!9.0.2 语法说明【过程选项】NPAR1WAY过程常用的选项有:∙MISSING 将缺失值也用于统计分析∙ANOV A 同时进行方差分析∙MEDIAN 要求进行中位数检验∙NOPRINT 禁止统计结果在OUTPUT视窗内输出∙SA V AGE 要求对样本进行SA V AGE得分分析∙WILCOXON 要求进行WILCOXON秩和检验我们常用的秩和检验就是WILCOXON秩和检验,对于其它方法,有兴趣的读者可参阅有关统计书籍。
非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。
相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。
本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。
首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。
秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。
非参数检验的应用领域广泛,包括但不限于以下几个方面。
一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。
常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。
在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。
二、相关性分析非参数检验可用于判断两个变量之间的关联性。
常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。
这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。
三、分组比较非参数检验可用于比较多个样本之间的差异。
常见的方法有Kruskal-Wallis检验、Friedman检验等。
这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。
在实际应用中,非参数检验需要注意以下几个问题。
一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。
然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。
二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。
但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。
三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。
但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。