不等式恒成立问题.ppt
- 格式:ppt
- 大小:588.51 KB
- 文档页数:21
(不)等式的恒成立,能成立,恰成立等问题一.知识点:1.恒成立问题不等式(),f x A x D >∈恒成立⇔()min ,f x A x D >∈不等式(),f x B x D <∈恒成立⇔()max ,f x B x D <∈.2. 能成立问题(),x D f x A ∃∈>使⇔()max ,f x A x D >∈.(即()A x f >在区间D 上能成立) (),x D f x B ∃∈<使⇔,()min ,f x B x D <∈.(即()B x f <在区间D 上能成立) (),x D f x m ∃∈=使⇔m N ∈,N 为函数(),y f x x D =∈的值域.(即()f x m =在区间D 上能成立)3. 恰成立问题若不等式()A x f >在区间D 上恰成立⇔不等式()A x f >的解集为D . 若不等式()B x f <在区间D 上恰成立⇔不等式()B x f <的解集为D ,二.题型(一).不等式恒成立问题的处理方法1.转换求函数的最值:例1.(2000年,上海卷)已知()[)220,1,x x a f x x x++=≥∈+∞恒成立,试求实数a 的取值范围;【分析及解】本题是一个恒成立问题。
解法一:分类讨论求函数()f x 的最小值。
当0a >时用对勾函数,当0a <时利用函数的单调性。
解法二:()022≥++=xa x x x f 对任意[)+∞∈,1x 恒成立 等价于()022≥++=a x x x ϕ对任意[)+∞∈,1x 恒成立,又等价于1≥x 时,()x ϕ的最小值0≥成立.由于()()112-++=a x x ϕ在[)+∞,1上为增函数, 则()()31min +==a x ϕϕ,所以 3,03-≥≥+a a . 2.主参换位法例2.若对于任意1a ≤,不等式()24420x a x a +-+->恒成立,求实数x 的取值范围解析:()(),13,x ∈-∞+∞ 3.分离参数法(1) 将参数与变量分离,即化为()()g t f x ≥(或()()g t f x ≤)恒成立的形式;(2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()()max g t f x ≥ (或()()min g t f x ≤) ,得t 的取值范围.适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出.例3.当()1,2x ∈时,不等式240x mx ++<恒成立,求m 的取值范围 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x +==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5max f x f ==,则2min 4()5x x +->-∴5m ≤-.4.数形结合例4 .若对任意x R ∈,不等式x ax ≥恒成立,求实数a 的取值范围. 解析:对∀x R ∈,不等式||x ax ≥恒成立则由一次函数性质及图像知11a -≤≤,即11a -≤≤.例5.当()1,2x ∈时,不等式()21log a x x -<恒成立,求a 的取值范围. 解:1<a ≤2.二.(不)等式能成立问题的处理方法1.转换求函数的最值:例1 若关于x 的不等式23x ax a --≤-的解集不是空集,求实数a 的取值范围.解析:是不等式能成立的问题. 设()a ax x x f --=2.则关于x 的不等式32-≤--a ax x 的解集不是空集()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f ,即(),3442min -≤+-=a a x f 解得6a ≤-或2a ≥2.分离参数法求值域例 若关于x 的二次方程()2110x m x +-+=在区间[]0,2上有解,求实数m 的取值范围.解析:解法一:利用根的分布来做.解法二:分离参数法axy x由题意知0x ≠,所以原题等价于()(]2110,0,2x m x x +-+=∈有解,即(]11,0,2m x x x-=+∈有解, 而()(]1,0,2x x x xϕ=+∈的值域是[)2,+∞,所以[)12,m -∈+∞ 解得1m ≤-.三.不等式恰成立问题的处理方法()0f x >在区间[],a b 上恰成立,1. ()21f x ax bx =++恰在区间11,3⎛⎫- ⎪⎝⎭上为正,求,a b解:3,2a b =-=- .2.已知函数()()()lg ,10x x f x a b a b =->>>,是否存在实数,a b ,使得()f x 恰在()1,+∞上取正值,且()3lg 4?f =若存在,求出,a b 的值,若不存在,说明理由.解:假设存在这样的实数,a b .∵()f x 恰在()1,+∞上取正值∴()0f x >的解集是()1,+∞又因为()()lg x x f x a b =-在()0,+∞上单调递增,所以()10f =. 由()()103lg 4f f =⎧⎪⎨=⎪⎩可得331410a b a b a b -=⎧⎪-=⎨⎪>>>⎩,解得12a b ⎧=⎪⎪⎨⎪=⎪⎩ ?※3. (2000年,上海卷) 已知(),22xa x x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值.【分析及解】是一个恰成立问题,?这相当于()022≥++=xa x x x f 的解集是[)+∞∈,1x . 当0≥a 时,由于1≥x 时,()3222≥++=++=xa x x a x x x f ,与其值域是[)+∞,0矛盾, 当0<a 时, ()222++=++=xa x x a x x x f 是[)+∞,1上的增函数. 所以,()x f 的最小值为()1f ,令()01=f ,即.3,021-==++a a解析:当0<a 时函数单调才会是恰成立问题. 练一练:1.已知f (x )=m (x -2m )·(x +m +3),g (x )=2x -2.若∀x ∈R ,f (x )<0与g (x )<0二者至少一个成立,则m 的取值范围是__(-4,0)________.解析:易知1x <时()0g x <,故只需1x ≥时()0f x <即可. 显然0m ≥不满足条件;当0m <时,对称轴302m x -=<,故只需(1)0f <,解得40m -<<. 2.(2005年春,北京理) 若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,则实数a 的取值范围是 ;若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .【分析及解】第一个填空是不等式恒成立的问题. 设()a ax x x f --=2.则关于x 的不等式02>--a ax x 的解集为),(+∞-∞ ()0>⇔x f 在()+∞∞-,上恒成立()0min >⇔x f ,即(),0442min >+-=a a x f 解得04<<-a 第二个填空是不等式能成立的问题. 设()a ax x x f --=2.则 关于x 的不等式32-≤--a ax x 的解集不是空集 ()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f ,即(),3442min -≤+-=a a x f 解得6-≤x 或2≥x .。