对管内湍流边界层结构与流动阻力特性的数值研究
- 格式:pdf
- 大小:196.41 KB
- 文档页数:4
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
边界层的形成与流动特性分析边界层是指在固体物体表面和流体之间的一个细小区域,这个区域内由于粘性效应的存在,流体流动速度逐渐从静止状态递增,直到达到与远离固体的自由流动速度相同的状态。
边界层形成与流动特性的分析对于许多领域具有重要意义,包括航空航天、工程设计、地质地球物理等。
边界层形成的过程可以通过物理原理和数学模型进行解释。
当流体在静止的固体表面上流动时,由于粘性作用,流体分子与静止物体表面接触后减速,形成运动速度减小的速度梯度。
这种速度梯度会逐渐向上游传播,形成一个层状结构,即边界层。
边界层的厚度取决于流体的速度、密度、粘性以及固体表面的粗糙度等因素。
边界层的流动特性与其形成过程紧密相关。
边界层的流动可以分为层流和湍流两种形式。
在边界层的初始部分,流体分子按层状结构有序运动,形成层流流动。
然而,在远离边界层的区域,由于速度梯度的变化,流体分子开始混乱运动,形成湍流流动。
层流和湍流的比例可以通过雷诺数来描述。
当雷诺数较小时,层流占主导地位;而当雷诺数较大时,湍流占主导地位。
边界层的流动特性也会受到影响因素的改变而发生变化。
例如,当固体表面的粗糙度增加时,边界层的湍流程度也会增加。
此外,边界层也受到来流速度的影响。
当来流速度增加时,边界层的厚度会减小,流动的剪切力也会增加。
这对于工程设计和流体力学的分析非常重要,因为它可以影响到一些重要的参数,例如风的压力、阻力、换热和质量传输等。
边界层的形成与流动特性分析对于实际问题的研究具有重要意义。
例如,在航空航天工程中,了解边界层的形成与流动特性可以帮助设计更加优化的机翼和机身,减小空气阻力,提高飞行性能。
在工程设计中,通过分析边界层的形成与流动特性可以改善传热和传质过程,提高设备的效率。
在地质地球物理研究中,边界层的分析可以帮助解释地下流体运动和岩石物理现象。
综上所述,边界层的形成与流动特性分析对于许多领域的研究和应用具有重要意义。
通过物理原理和数学模型的分析,我们可以更好地理解流体与固体表面的相互作用,并优化相关系统的设计与运行。
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
流体力学中的湍流流动与边界层流体力学是研究流体运动规律的学科,其中的湍流流动和边界层是流体力学中的重要概念和研究内容。
本文将详细介绍流体力学中的湍流流动和边界层,并探讨它们在实际应用中的重要性。
一、湍流流动湍流是流体力学中流动状态的一种,具有不规则、随机、混沌等特点。
相比于层流流动,湍流流动更为复杂和难以预测,主要体现在流速和压力的不规则变化上。
湍流流动的产生与流体的运动粘滞性、速度梯度和流速等因素有关。
当流体速度达到一定值时,流体内的涡旋和涡核开始发生不断变化与演化,从而形成湍流。
湍流的特点包括涡旋的旋转、涡核的运动、速度的乱流扩散等。
湍流流动在自然界和工程领域中广泛存在。
例如,在大气环流中,气候系统中的飓风和龙卷风就是湍流现象的典型表现。
此外,湍流流动还广泛应用于船舶、飞机、汽车等交通工具的设计和流体动力学的研究中。
二、边界层边界层是流体力学中的一个概念,指的是流体运动中与边界接触的区域。
边界层中的流体速度和压力分布具有明显的变化,可以用来描述流体在壁面附近的流动特性。
边界层主要有两种类型:层流边界层和湍流边界层。
层流边界层是指流体在边界附近以有序的方式流动,流速梯度较小,流体粘性起主导作用。
湍流边界层是指在湍流环境下,流体在边界附近的混乱流动。
边界层的存在对流体运动过程起到了重要作用。
首先,边界层中的摩擦力会对物体表面施加阻力,影响物体的运动。
其次,边界层中的速度分布对流动的稳定性和流体的传热性能产生重要影响。
三、湍流流动与边界层的关系湍流流动与边界层密切相关。
在边界层内,由于速度和压力的不规则变化,往往会导致流动变为湍流。
特别是当流速较大或受到外界扰动时,湍流的发展更加明显。
湍流边界层的存在使得流体在边界附近的运动更为复杂,涡旋和涡核的形成与演化对流动的稳定性和传热传质过程产生了影响。
同时,湍流边界层的存在也为流体的混合和动量交换提供了机会,使得流体的运动更为强烈和混乱。
在实际工程应用中,湍流边界层的研究对于流体动力学分析、流体传热传质等方面具有重要意义。
不同湍流模型在管道流动数值模拟中的适用性研究邵杰;李晓花;郭振江;刘瑞璟;田晓亮【摘要】Currently numerical simulation has been applied in thefields of scientific research and engineering in large scale. Turbulent model is often used in simulation. But different turbulent model has its applicable scope respectively. In this article, by using some common turbulent models provided in CFD software FLUENT, the numerical simulation of turbulentflow in pipe was carried out and the frictional drag resulted from simulation was compared with that obtained in experiment. It was shown from the results of analysis that Spalart-Allmaras model,k-ε (EWT) model and Reynolds stress (EWT) model are suitable for hydraulically smooth pipe with laminarflow, butk-ε model is suitable both of laminar and turbulentflows; for hydraulically smooth pipe with laminarflow, the highest precision can be reached by use of Spalart-Allmaras model; for coarse surface pipe with laminarflow, coarse degree should be adjusted in use ofk-ε model.%针对数值模拟在科学研究和工程实践领域中的大规模应用,湍流模型是数值模拟中常用的模型,不同湍流模型有自己的适用范围。
湍流的理论与实验研究湍流的理论与实验研究湍流是流体力学界公认的难题,被认为是经典物理学中最后一个未被解决的问题。
自然界和工程领域的绝大多数流动都是湍流,因此湍流研究具有重大意义。
近年来,随着实验测量技术和数值模拟能力的不断增强,学术界对高雷诺数和高马赫数湍流有了许多新的认识。
我国科学界也结合国家重大战略需求和学科发展前沿,分析国际上湍流研究的特点、现状和发展趋势,希望对湍流产生机制和流动本质进行深入研讨,加强与航空、航天、航海等相关单位和部门间的沟通与联系,推动湍流研究的发展。
针对国内学科发展现状,尤其是实验研究相对薄弱的特点,国家自然科学基金委员会数理科学部、工程与材料科学部和政策局,于2014年3月20-21日在北京联合举办了第110期双清论坛,论坛主题为“湍流的理论与实验研究”。
来自全国15个单位的近50位流体力学与工程领域的专家学者应邀出席。
与会专家通过充分而深入的研讨,凝练了该领域的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。
本期特刊登此次论坛学术综述。
一、湍流研究的重要意义自1883年雷诺(Reynolds)发现湍流以来,湍流问题的研究一直困扰着众多学者。
著名物理学家费曼曾说,湍流是经典物理学中最后一个未被解决的难题;2005年《科学》杂志在其创刊125周年公布的125个最具挑战性的科学问题中,其中至少两个问题与湍流相关。
在我们日常生活中,湍流无处不在。
自然界和工程应用中遇到的流动,绝大部分是复杂的湍流问题。
在自然界,从宇宙星系的时空演化,到星球内部的翻滚流动,从大气环流的全球运动,到江河湖泊的区域流动,都有湍流的身影。
在工程领域,从陆地、海洋、空天等交通运载工具,到原子弹、氢弹、导弹、战斗机、舰船等国防武器的设计;从全球气象气候的预报,到地区水利工程的设计;从传统行业如叶轮机械、房桥建筑、油气管道,到新兴行业如能源化工、医疗器械、纳米器件的设计,都需要了解和利用湍流。
因此,湍流流动的研究不仅仅是一个学科发展的问题,更具有重要的工程应用价值。