激光原理第四章习题解答
- 格式:doc
- 大小:344.00 KB
- 文档页数:12
激光原理复习题第一章 电磁波1. 麦克斯韦方程中0000./.0t t μμερε∂⎧∇⨯=-⎪∂⎪∂⎪∇⨯=+⎨∂⎪∇=⎪⎪∇=⎩B E EB J E B麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表示电场和磁场的散度;(2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋电场),它不是由电荷激发的,而是由随时间变化的磁场激发的;(3)由方程组中的2式可知,在真空中,,J =0,则有 t E ∂∂=∇ 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。
这种交替的不断变换会导致电磁波的产生。
2, 产生电磁波的典型实验是哪个?基于的基本原理是什么?答:产生电磁波的典型实验是赫兹实验。
基于的基本原理:原子可视为一个偶极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。
简单地说就是利用了振荡电偶极子产生电磁波。
3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。
对于可见光范围的电磁波,它的产生是基于原子辐射方式。
那么由此原理产生的光的特点是什么?答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。
4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。
请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么?答:有三种:自发辐射,受激辐射,受激吸收。
其中受激辐射与激光的产生有关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射方向,相同的偏振态和相同的相位,是相干光。
5光与物质相互作用时,会被介质吸收或放大。
被吸收时,光强会减弱,放大时说明介质对入射光有增益。
周炳琨激光原理第四章习题解答(完整版)习题1解:根据多普勒效应,有习题2解:为清楚起见,如下图所示光源发出频率为V o 的光,以M 上反射的光为I'它被M1反射并透过M ,由图中 的I 所标记;透过 M 的光记为II '它被M2反射后又为 M 反射,此光记为II ,由 于M 和M1均为固定镜,所以I 光的频率不变,仍为:°,将M2看作光接收器,由于它以速度:运动,故它感受到的光的频率为 :0,依照下式因M2反射II '光,所以它又相当于光发射器,其运动速度为 :时,发出的光的频率为当: = 0.1c 时, ■ 1 : 572 .4 nm 当: = 0.4c 时, ■ 2 : 414 .3nm 当: = 0.8c 时, ■ 3 :'210 .9 nm这样I 光的频率为:° ,11光的频率为■- ° 2v1在屏P 上, I 光和II 光的电场可分c 1相对应的M2镜的空间坐标,且有(Lz -L J^L习题3解:根据光波的相干长度公式(1.1.16)C LCAv由题意可知,忽略自然加宽和碰撞加宽,则主要表现为多普勒加宽7T 1/2_7C T 即:匸 -D 二 7.16 10 ■- 0( )7.16 10( M\ M二 336 MH ZC C则 L C0.89 mAv A%对氦氖激光器,相干长度为因而屏P 上的总光场为E ii = E ° cos |2,: ; o( V 、 fv2血)0t + — 2叱 0t icos 一2皿 0t 1 、、、 c 丿2光强正比于电场振幅的平方,所以P 上光强为I Io它是t 的周期函数,单位时间内的变化次数为u 2°o dLm = - 2: oc c dt由上式可得dt 时间间隔内屏上光强暗变化的次数为mdt 二c因为dt 是镜M2移动dL 长度所花费的时间, 屏上光强的亮暗变化次数,对上式两边积分,所以mdt 也就是镜M2 即可得到镜M2移动L暗变化的次数 S 二t 2t1 mdtL22o dLcL12°°(L 2J )= c式中t1和t2分别为M2镜开始移动的时刻和停止移动的时刻,L1和 移动dL 过程中 时,屏上光强亮 2L ■■"••0L2为与t1和t2E = E | :卜Eu =2E 0cos丿1 +c 0S|2兀 I v2uL C( ),—63.28 mu a习题4解:CO 2气体,T=300K ,考察10.6」m 线,多普勒线宽为35 10 H由- P - D 得:P .1.08kPa 。
第四章高斯光束理论一、学习要求与重点难点学习要求1.掌握高斯光束的描述参数以及传输特性;2.理解q 参数的引入,掌握q 参数的ABCD 定律;3.掌握薄透镜对高斯光束的变换;4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;5.理解高斯光束的聚焦和准直条件;6.了解谐振腔的模式匹配方法。
重点1.高斯光束的传输特性;2. q 参数的引入;3. q 参数的ABCD 定律;4.薄透镜对高斯光束的变换;5.高斯光束的聚焦和准直条件;6.谐振腔的模式匹配方法。
难点1. q 参数,及其ABCD 定律;2.薄透镜对高斯光束的变换;3.谐振腔的模式匹配。
1等相位面:以R 为半径的球面,R(z) =z [ 莘 -2点的远场发散角, m = lim 2w(z) _2 --- =e zY : z 二 W oW o(或f )及束腰位置―;将两个参数W(z)和R(Z)统一在一个表达式中,便于研究 z、知识点总结振幅分布:按高斯函数从中心向外平滑降落。
光斑半径 w(z)二w 0.:高斯光束特征参数 光斑半径w(z)和等相位面曲率半径:/% =w(z) 1 +⑷(z)丿 R(z)、 -'I :( z = R(z) 1十卜 j 匚 辽w(z)丿.二 W 2(z) 2咼斯光束基本性质远场发散角: 1 1. 九iq 参数,q (z) R(z)兀 w(z)2 q (z )=if+z =q +z =i 孚1高斯光束通过光学系统的传输规律2傍轴光线L 的变换规律器 士C ; D』傍轴球面波的曲率半径R 的变换规律R AR^B .遵从相同的变换规律 CR +D高斯光束q 参数的变换规律q^Aq^B Cq i +DABCD 公式高斯光束q 参数的变换规律 高斯光束的聚焦:只讨论单透镜 高斯光束的准直:一般为双透镜ABCD 公式云誓T 高斯光束的模式匹配:实质是透镜变换,分两种情况已知w 0,w 0,确定透镜焦距F 及透镜距离I ,I' 已知两腔相对位置固定l^ I I '及W o ,W o 确定,F 如何选择高斯光束的自再现变换 )W’o =W o or I'=I高斯光束的自再现变换和稳定球面腔q(I')=q(O )T 2透镜F J U 1+徳J]-丿」I 球面镜R(I)=I 1+@曲[] . 4丿」二w 0即F E R(I)=稳定球面腔、典型问题的分析思路2高斯光束的q 参数在自由空间中的传输规律 q(z) = i —些亠z = q 0亠z1)高斯光束通过单个透镜的变换。
11.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。
)解:已知条件R 1=∞, R 2=2 m, L =0.5 m∵等价的对称共焦腔参数L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( LR R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f对于基横模 ∵22001⎪⎪⎭⎫ ⎝⎛+=πωλωωz z )(, πλωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=2202ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗?解:相邻两个纵模频率差L cμν2=∆短腔法选单纵模的条件是2F v ∆>∆ν2 ∵F F cλλν∆=∆2≈6.4×1012 HzFv c L ∆<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。
因此不能用短腔法选单纵模。
3.解:mm s f 01.02.060300=⨯=='ωω 5.解:∵L 1紧靠腔的输出镜面∴入射在L 1上的光斑半径ω满足:∴31.1125.220012=⨯=='ωωf f M 7.解:当声频改变ν∆时,衍射光偏转的角度为:νμυλφ∆=∆s; 而高斯光束的远场发散角为:0μπωλθ=; 可分辨光斑数为:1571031050103003360=⨯⨯⋅⋅⨯=⋅⋅∆=∆=-.πυωπνθφsn 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。
第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+0cos(2)I E E t v πν=⎡⎤因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=解: Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λ νλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α(2) 01010*********I .e I e I e I I .z ====-⨯-α 即经过厚度为0.1m 时光能通过%10. 解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于I960年发明了世界上第一台激光器一—红宝石激光器,其波长为694.3nm。
其频率为:A:4.74某10^14(14是上标)HzB:4.32某10人14(14是上标)HzC:3.0某10人14(14是上标)Hz您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。
其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(A入)为1某10m、波长为0.5m的自发辐射光。
求此光的频带范围A V°A:120GHzB:3某10八18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10八18(18为上标)B:8某10八10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L腔内振荡光的中心波长为求该光的波长带宽的近似值。
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136) 由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 12显然,光强是以频率cυν⋅2为频率周期变化的。
第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=⎡⎤=+因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理(陈鹤鸣版)部分习题答案整理第⼆章5)激发态的原⼦从能级E2跃迁到E1时,释放出m µλ8.0=的光⼦,试求这两个能级间的能量差。
若能级E1和E2上的原⼦数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。
【参考例2-1,例2-2】解:(1)J hcE E E 206834121098.310510310626.6---?===-=?λ(2)52320121075.63001038.11098.3exp ---?-?=-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。
试求该物质的⼩信号增益系数0G .假设激光在往复运动中没有损耗。
104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L ==λ=δ-- s ..c L c 881075110318801-?=??=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =??-=-=δ s ..c L c 881078210311901-?=??=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返⼀周的光学变换矩阵??D C B A ,并证明这两种情况下的)(2 1D A +相等。
(a )(b )解: 1234T T T T T =(a) ???? ??=???? ?????--=D C B A LR L R T 1011201101120121221R L A -= 124421212+--=R L R L R R L D244421212+--=+R LR L R R L D A(b) ???? ??=???? ?????- -=D C B A LR L R T 1011201101120112121R L A -= 124412212+--=R L R L R R L D244421212+--=+R LR L R R L D A L ④③②① L④③②①8.腔长为0.5m 的氩离⼦激光器,发射中⼼频率0ν=5.85?l014Hz ,荧光线宽ν?=6?l08 Hz ,问可能存在⼏个纵模?相应的q 值为多少? (设η=1)解:纵模间隔为:Hz L cq 881035.0121032?===ην, 210310688=??=??=q n νν,则可能存在的纵模数有3个,它们对应的q 值分别为: 68141095.11031085.522?=??=?=?=νµµνc L q L qc ,q +1=1950001,q -1=194999918.欲设计⼀对称光学谐振腔,波长λ=10.6µm ,两反射镜间距L =2m ,如选择凹⾯镜曲率半径R =L ,试求镜⾯上光斑尺⼨。