信号与系统名词解释
- 格式:doc
- 大小:34.00 KB
- 文档页数:1
信号与系统的名词解释引言:信号与系统是电子工程、通信工程、自动控制工程等学科中的基础课程之一,它研究的是信号(Signal)和系统(System)的原理、性质以及它们之间的相互关系。
本文将对信号与系统中常见的一些名词进行解释,让读者对这门学科有更深入的理解。
信号(Signal):信号是一种描述信息或者现象随时间、空间或其他自变量变化的物理量。
信号可以按照不同的分类标准进行划分,比如连续信号和离散信号、周期信号和非周期信号等。
在电子工程中,常用的信号有模拟信号(Analog Signal)和数字信号(Digital Signal)。
模拟信号是连续的,它在数值和时间上都可以连续变化;而数字信号则是离散的,它的数值和时间只能取离散值。
系统(System):系统是指对输入信号进行加工、处理、转换等操作后,产生输出信号的装置或结构。
系统可以分为线性系统和非线性系统、时不变系统和时变系统等。
线性系统是指具有线性特性的系统,其输出信号与输入信号之间的关系满足叠加原理;非线性系统则是具有非线性特性,其输出信号与输入信号之间的关系不满足叠加原理。
时不变系统是指其性质不随时间变化而改变;时变系统则是其性质随时间变化而改变。
时域(Time Domain):时域是信号在时间上的变化特性的描述。
时域分析是对信号进行时间上的观察与测量,常用的时域分析方法有时域波形图、自相关函数和互相关函数等。
时域分析能够展示信号的波形、振幅、周期性等特征,对于理解信号的变化规律十分重要。
频域(Frequency Domain):频域是信号在频率上的变化特性的描述。
频域分析是通过使用傅里叶变换将信号从时域转换到频域,以便分析信号在频率上的分布情况。
常见的频域分析方法有频谱分析、功率谱密度分析等。
频域分析可以揭示信号具有的各个频率分量,对于研究信号的频率成分非常有帮助。
傅里叶变换(Fourier Transform):傅里叶变换是一种将信号从时域转换到频域的数学工具。
信号与系统的基本概念信号与系统是现代通信、电子、计算机等领域中的基础学科,它是一门研究信号在系统中传输、处理、变换和分析的学科。
信号是指在时间或空间上发生变化的物理量,如声音、图像、电压等,而系统则是对信号进行处理的设备或装置,如滤波器、调制器、解调器等。
信号与系统的研究范围涉及到数学、物理、电子、计算机等多个学科,具有广泛的应用价值。
在信号与系统中,信号可以分为连续信号和离散信号两类。
连续信号是指在时间上连续变化的信号,如声波、电压等,它们可以用连续函数表示。
离散信号则是指在时间上呈现出离散变化的信号,如数字音频、数字图像等,它们可以用数列表示。
信号的处理包括滤波、调制、解调、采样等操作,这些操作可以通过系统来实现。
系统可以分为线性系统和非线性系统两类。
线性系统是指其输入和输出之间存在线性关系的系统,如低通滤波器、线性调制器等。
非线性系统则是指其输入和输出之间不存在线性关系的系统,如非线性滤波器、非线性调制器等。
系统的性质可以通过其冲激响应、频率响应等来描述,这些描述方法可以用于系统分析和设计。
在信号与系统中,还有一些重要的概念和工具,如傅里叶变换、拉普拉斯变换、离散傅里叶变换等。
傅里叶变换可以将一个信号分解成不同频率的正弦波成分,这对于频域分析非常有用。
拉普拉斯变换则可以将一个连续时间域的系统转换为一个复平面上的函数,这对于时域和频域分析都非常有用。
离散傅里叶变换则是将一个离散时间域的信号转换为一个复平面上的函数。
总之,信号与系统是一门重要的学科,它涉及到多个学科和领域,具有广泛的应用价值。
了解信号与系统的基本概念和工具对于从事相关领域的人员来说非常重要。
关于信号与系统最通俗的解释•关于信号与系统最通俗的解释,讲得真好!(在网上找的,方便大家参考)第二课到底什么是频率什么是系统?这一篇,我展开的说一下傅立叶变换F。
注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。
我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。
1. 到底什么是频率?一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。
想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。
相信中学生都能理解这个。
那么,不同的频率模型其实就对应了不同的圆周运动速度。
圆周运动的速度越快,sin(t)的波形越窄。
频率的缩放有两种模式(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。
(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。
2. F变换得到的结果有负数/复数部分,有什么物理意义吗?解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。
3. 信号与系统这们课的基本主旨是什么? 对于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特性,通常不同传输介质对于不同频率段的信号有不同的处理能力。
通信原理和信号与系统
通信原理和信号与系统两者密切相关,都是研究信号的产生、传输和处理的学科。
通信原理主要关注于信号的传输和通信系统的设计,而信号与系统主要关注于信号的分析与处理。
通信原理研究的是信号的传输过程,包括信号的产生、调制、传输、解调和接收等。
在通信原理中,信号被视为一种能量或功率随时间或空间而变化的物理量。
通信系统根据不同的应用需求,采用不同的调制方式,如模拟调制和数字调制。
模拟调制一般将连续时间信号调制为连续振幅和相位变化的载波信号,而数字调制则将离散时间信号调制为离散振幅和相位变化的数字信号。
信号与系统研究的是信号的分析与处理方法,包括信号的表征、传输、滤波、调制、解调等。
信号可以是连续时间信号或离散时间信号,系统则可以是线性系统或非线性系统。
信号与系统的分析方法有时域分析和频域分析两种,时域分析主要关注信号在时间上的变化规律,而频域分析则关注信号在频率上的变化规律。
总的来说,通信原理和信号与系统都是研究信号的产生、传输和处理的学科,只是从不同的角度和目的进行研究。
通信原理主要关注信号的传输和通信系统的设计,而信号与系统主要关注信号的分析与处理方法。
两者相互补充,共同为实现高效、可靠的通信系统提供理论和技术支持。
1.信号、信息、系统信号是随时间变化的物理量,消息是带传送的一种以收发双方事先约定的方式组成的符号,如语言、文字;信息是所接收到的未知内容的消息,即传输的信号是带有信息的。
信号是消息的表现形式,消息是信号的具体内容。
系统:若干相互关联的事物组合而成,具有特定功能的整体2.奇异信号函数本身有不连续点或其导数或积分有不连续点的叫做奇异函数,单位冲击单位阶跃3.能量信号和功率信号能量信号:信号能量非零有限,平均功率为0,。
持续时间有限的确定信号功率信号:信号能量无限,平均功率非零有限。
直流,周期,随机信号4.因果信号和非因果信号因果:仅在自变量正半轴区间,取非零值,物理可实现5.系统的特性记忆/无记忆:对自变量的每一个值,系统的输出仅取决于该时刻的输入,则为无记忆。
可逆性:不同输入,导致不同输出,则为可逆系统因果性:因果系统任何时刻的输出只取决于现在的输入和过去的输入。
t<0,h(t)=0稳定性:输入有界输出有界时不变特性:系统特性不随时间改变线性:叠加性,齐次性6.线性时不变系统线性:齐次性、可加性时不变:输出仅与输入有关,与状态无关7.起始状态、初始状态起始状态:零输入状态,指系统在激励信号加入前的状态初始状态:指系统在激励信号加入之后的状态起始状态是系统中储能元件储能的反映8.零输入响应、零状态响应零输入响应:系统输入为0,由起始状态所产生的响应,或者将之等效为电压源或者电流源即等效输入信号所产生的。
零状态响应:系统起始无储能,系统响应只由外加信号产生,线性性质:系统的响应是二者响应之和。
9.冲击响应、阶跃响应冲击响应与阶跃响应都属于零状态响应。
冲击响应:是系统在单位冲击信号激励下的响应,可以确定系统的因果性和稳定性。
冲击响应等于阶跃响应的导数,阶跃响应等于冲击响应的积分。
求法:先写出系统的微分方程,在求齐次解,再根据特征方程得到通解,根据初始条件得到系数。
10.卷积积分意义定义:在连续时间系统中,利用卷积的方法求系统的零状态响应。
1 双端口网络:若网络有两个端口,则称为双口网络或二端口网络2 阶跃响应:当激励为单位阶跃函数时,系统的零状态响应3 冲激响应:当激励为单位冲激函数时,系统的零状态响应4 周期信号频谱的特点:①离散性》频谱是离散的②谐波性》频谱在频率轴上位置都是基波的整数倍③收敛性》谱线高度随着谐波次数的增高总趋势是减小的5 模拟离散系统的三种基本部件:数乘器·加法器·单位延迟器6 模拟连续系统的三种基本部件:数乘器·加法器·积分器7 线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统8 通频带:我们把谐振曲线有最大值9 离散系统稳定的充分必要条件:∑︳h(n)︳〈∞(H(z)的极点在单位圆内时该系统必是稳定的因果系统)10网络函数:在正弦稳态电路中,常用响应向量与激励向量之比定义为网络函数,以H(jw)表示11 策动点函数:激励和响应在网络的同一端口的网络函数12 传输函数(转移函数):激励和响应在不同的端口的网络函数13 因果连续系统的充分必要条件:h(t)=0 t<0 (收敛域在S右半平面的系统均为因果系统)14 连续时间稳定系统的充分必要条件:∫︳h(t)︳dt≤M M:有界正实常数即h(t)满足绝对可积,则系统是稳定的15 傅里叶变换的时域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)*f2(t)↔F1(jw)F2(jw)16 傅里叶变换的频域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)·f2(t)↔(1/2π)F1(jw)*F2(jw)17 稳定系统:18 系统模拟:对被模拟系统的性能在实验室条件下模拟装置模仿19 因果系统:未加激励不会产生零状态响应的系统20 稳定的连续时间系统:一个连续时间系统,如果激励f(t)是有界的,其零状态响应y f(t)也是有界的,则称该系统是稳定的连续时间系统21 H(s)(h(t))求法:由微分方程、电路、时域模拟框图,考虑零状态条件下取拉氏变换、画运算电路、作S域模拟框图,应用Y f(s)/F(s)糗大H(s)。
1. 信号:是信息的载体。
通过信号传递信息。
2. 系统:是指若干相互关联的事物组合而成具有特定功能的整体
3. 数字信号:仅在一些离散的瞬间才有定义的信号。
4. 模拟信号:在连续的时间范围内(-∞<t<∞)有定义的信号。
5. 连续系统:若系统的输入信号是连续信号,系统的输出信号也是连续信号。
6. 离散系统:若系统的输入信号和输出信号均是离散信号。
7. 动态系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关。
8. 即时系统:不含有记忆元件(电容、电感等)的系统。
9. 线性系统:满足线性性质的系统。
10. 因果系统:零状态响应不会出现在激励之前的系统。
11. 连续因果系统的充分必要条件是:冲激响应 h(t)=0,t<0 或者,系统函数H(s)的收敛域为:Re[s]>σ0
12. 离散因果系统的充分必要条件是:单位响应 h(k)=0, k<0 或者,系统函数H(z)的收敛域为:|z|>ρ0
13. 稳定系统:一个系统,若对有界的激励f(.)所产生的零状态响应y f (.)也是有界时,则称该系统为有界输入有界输出稳定。
14. 时不变系统:满足时不变性质的系统称。
15. 时不变性质:若系统满足输入延迟多少时间,其零状态响应也延迟多少时间。
16. 零状态响应:当系统的初始状态为零时,仅有输入信号f(t)/f(k)的响应。
17. 零输入响应:是激励为零时仅有系统的初始状态{x(0)}所引起的响应。
18. 自由响应:齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关
19. 强迫响应:特解的函数形式由激励确定,称为强迫响应。
20. 冲激响应:当初是状态为零是,输入为单位冲激函数δ(t)所引起的零状态响应。
21. 阶跃响应:当初是状态为零是,输入为单位阶跃函数所引起的零状态响应。
22. 正交:定义在(t 1,t 2)区间的两个函数ϕ 1(t)和ϕ 2(t),若满足 23. 完备正交函数集:如果在正交函数集{ϕ1(t), ϕ 2(t),…, ϕ n (t)}之外,不存在函数φ(t)(≠0)满足
⎰=210d )()(t t i t t t ϕϕ ( i =1,2,…,n)。
24. 无失真传输:信号无失真传输是指系统的输出信号与输入信号相比,只有幅度的大小和出现时间
的先后不同,而没有波形上的变化。
25. 理想低通滤波器:具有如图所示幅频、相频特性的
26. 系统称为理想低通滤波器。
ωc 称为截止角频率。
27. 时域取样定理:一个频谱在区间(-ωm ,ωm )以外为0的带限信号f(t),可唯一地由其在均匀间隔T s
[T s <1/(2f m )] 上的样值点f(nT s )确定。
28. 频域取样定理:一个在时域区间(-t m ,t m )以外为0的时限信号f(t)的频谱函数F(j ω),可唯一地由其在均匀频率间隔f s [f s <1/(2t m )]上的样值点F(jn ωs )确定。
29. 全通函数:凡极点位于左半开平面,零点位于右半开平面,并且所有零点与极点对于虚轴为一一镜像对称的系统函数即为全通函数。
30. 最小相移函数:右半开平面没有零点的系统函数称为最小相移函数。
31. 稳定系统:一个系统,若对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输入有界输出(BIBO)稳定的系统,简称为稳定系统。
32. 前向通路:从源点到汇点的开通路称为前向通路。
⎰=210d )()(21t t t t t ϕϕ。