正态总体均值及方差的假设检验表
- 格式:doc
- 大小:399.24 KB
- 文档页数:5
§7.3 双正态总体参数的假设检验设样本1,,1n X X 取自正态总体211(,)N μσ,样本2,,1n Y Y 取自总体222(,)N μσ,两样本相互独立,它们的样本均值分别为∑==1111n i iX n X ,∑==2121n j jYn Y ,样本方差分别为∑=--=112121)(11n i i X X n S ,∑=--=212222)(11n j j Y Y n S 。
一、 关于两个正态总体方差比的假设检验以双侧检验:2221122210::σσσσ≠↔=H H 为例 选用检验统计量2221S S F =,它在原假设0H 成立的条件下服从F 分布)1,1(21--n n F ;记2221s s f O =表示检验统计量F 的样本观测值,则检验的P 值为⎪⎩⎪⎨⎧<=≥≥=≥=1),/1/1(21),(222212221O O O O f f F P f f F P P 如果如果σσσσ这种检验方法通常称为“F 检验”。
例7.3.1 甲乙两台车床分别加工某种轴,轴的直径分别服从正态分布),(211σμN ,),(2σμN ,从各自加工的轴中分别抽取若干根,测得其直径如下表所示:试问在显著性水平05.0=α下,两台车床加工的精度是否有显著差异?解:(1)依题意,考虑假设检验问题2221122210::σσσσ≠↔=H H (2)用F 检验,检验统计量为)6,7(~02221F S S F H =或)7,6(~/102122F S S F H =;(3)由样本观测值可得2164.021=s ,2729.022=s ,检验统计量的值为793.0/2221==s s f O 。
故检验的P 值为76.038.02)793.0/1/1(22221=⨯==≥=σσF P P 。
(4) 因为05.0>P ,所以不拒绝原假设0H ,即没有充分理由认为两种机床所加工轴的精度有显著差异。
假设检验一、基本思想与基本步骤(一)假设检验问题[例1.6-1]某厂生产某种化纤的纤度X服从正态分布N(μ,0.042),其中μ的设计值为1.40,每天都要对“μ=1.40”作例行检验,以观生产是否正常运行。
某天从生产线中随机抽取25根化纤,测得纤度值为:x1,x2,…,x25其纤度平均值=1.38,问当日生产是否正常。
几点评论:(1)这不是一个参数估计问题。
(2)这里要求对某个命题“μ=1.40”回答:是与否。
(3)这一类问题被称为(统计)假设检验问题。
(4)这类问题在质量管理中普遍存在。
(二)假设检验的基本步骤假设检验的基本思想是:根据所获样本,运用统计分析方法,对总体X的某种假设H0做出接受或拒绝的判断。
具体做法如下:1.建立假设H0:μ=1.40这是原假设,其意是:“与原设计一致”,“当日生产正常”等。
要使当日生产与1 40无差别是办不到的,若差异仅是由随机误差引起的,则可认为H0成立;若由其他特殊因素引起的,则认为差异显著,则应拒绝H0。
H1:μ≠1.40 这是备择假设,它是在原假设被拒绝时而应接受的假设。
在这里,备择假设还有两种设置形式,它们是:H12:μ<1.40,或H13:μ>1.40 备择假设的不同将会影响下面拒绝域的形式,今后称H0对H1的检验问题是双边假设检验问题H0对H12的检验问题是单边假设检验问题H0对H13的检验问题也是单边假设检验问题注:若假设是关于总体参数的某个命题,称为参数的假设检验问题,比如:H0:μ=μ0,H1:μ≠μ0,H0:σ2≤σ20,H1:σ2>σ20,H0:P≥P0,H1:P<P0,都是参数假设检验问题。
东莞德信诚精品培训课程(部分)(点击课程名称打开课程详细介绍)内审员系列培训课程查看详情TS16949五大工具与QC/QA/QE品质管理类查看详情 JIT东莞德信诚公开课培训计划>>> 培训报名表下载>>> /download/dgSignUp.doc2.选择检验统计量,给出拒绝的形式这个假设检验问题涉及正态均值μ。