不定积分小结、习题课
- 格式:ppt
- 大小:731.00 KB
- 文档页数:19
. 1 .第四章 不定积分 习题课1.原函数 若,则称为的一个原函数.)()(x f x F =')(x F )(x f 若是的一个原函数,则的所有原函数都可表示为)(x F )(x f )(x f .C x F +)(2.不定积分 的带有任意常数项的原函数叫做的不定积)(x f )(x f 分,记作.⎰dx x f )(若是的一个原函数,则,)(x F )(x f C x F dx x f +=⎰)()(3.基本性质1),或;)(])([x f dx x f ='⎰dx x f dx x f d )(])([=⎰2),或;C x F x dF +=⎰)()(C x F dx x F +='⎰)()(3);⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([4),(,常数).⎰⎰=dx x f k dx x kf )()(0≠k 4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一.5. 例题例1 已知的一个原函数是,求.)(x f x 2ln )(x f '解 , .x x x x f 1ln 2)(ln )(2⋅='=)ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='. 2 .例2 设,求.C x dx x f +=⎰2sin 2)()(x f 解 积分运算与微分运算互为逆运算,所以.2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰例3 若的一个原函数是,求.)(x f x 2⎰'dx x f )(解 因为是的原函数,故,所以x 2)(x f 2ln 2)2()(x x x f ='=.C C x f dx x f x +=+='⎰2ln 2)()(例4 求不定积分.⎰-dx e x x 3解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即.⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13例5 求不定积分.⎰'⎪⎭⎫⎝⎛dx x x 2sin 解 利用求导运算与积分运算的互逆性,得.C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin 例6 求不定积分.⎰⋅dx xxx 533解 先用幂函数的性质化简被积函数,然后积分..C x dx x dx x dx xxx +===⋅⎰⎰⎰-+15261511533115332615. 3 .例7 求不定积分.⎰++++dx xx x x x 32313解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113.⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln 例8 求不定积分.⎰-dx x2cos 11解 用三角恒等式将被积函数变形,然后积分.x x 2sin 212cos -=.⎰⎰=-dx xdx x 2sin 212cos 11⎰=xdx 2csc 21C x +-=cot 21例9 求不定积分.⎰+dx x x )sec (tan 22解 用三角恒等式将被积函数统一化为的函数,1sec tan 22-=x x x 2sec 再积分.⎰⎰+-=+dxx x dx x x )sec 1(sec )sec (tan2222.⎰-=dx x )1sec 2(2C x x +-=tan 2例10 求不定积分.⎰++dx x x x )1(21222解 .⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan. 4 .例11 求不定积分.⎰+dx x x )1(124解 类似于例10,拆项后再积分⎰⎰++--+=+dxx x x x x x dx x x )1(1)1(124442224.⎰⎪⎭⎫ ⎝⎛++-=dx x x x 2241111C x x x +++-=arctan 1313例12 一连续曲线过点,且在任一点处的切线斜率等于,)3,(2e x2求该曲线的方程.解 设曲线方程为,则,积分得)(x f y =xx f 2)(='. (曲线连续,过点,故C x dx xx f +==⎰ln 22)()3,(2e )0>x 将代入,得,解出.所以,曲线方程为3)(2=e f C e +=2ln 231-=C .1ln 2-=x y 例13 判断下列计算结果是否正确1); 2).C x dx xx +=+⎰322)(arctan 311)(arctan ()C e dx ex x++=+⎰1ln 11解 1),所以计算结果正确.2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+2), 计算结果不正确,即[]xx x xe e e C e +≠+='++111)1ln(.()C e dx ex x++≠+⎰1ln 11. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式1)时,.0≠a ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f 2).⎰⎰=x d x f xdx x f sin )(sin cos )(sin 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln 5),时,0>a 1≠a =⎰dx a a f x x )(6)时,0≠μ1()f x x dx μμ-=⎰7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin 10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()(例14 求.⎰dx xx xcos sin tan ln 解 ⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=xd xxtan tan tan ln .⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21. 6 .注由于被积函数中含有,表明,故x tan ln 0tan >x .x d x d xtan ln tan tan 1=例15 求下列不定积分1); 2).⎰+dx xx xln 1ln ⎰+dx x x 100)1(解 1) (请注意加1、减1的技巧)⎰⎰⋅+-+=+dx xx x dx xx x1ln 111ln ln 1ln⎰+⎪⎪⎭⎫ ⎝⎛+-+=)ln 1(ln 11ln 1x d x x .C x x ++-+=2123)ln 1(2)ln 1(322)dxx x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x.C x x ++-+=101102)1(1011)1(1021例16 设,不求出,试计算不定积分C x dx x f +=⎰2)()(x f .⎰-dx xxf )1(2解 (将看作变量)2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰21x -u .C x +--=22)1(21例17 设,求.x e x f -=)(⎰'dx xx f )(ln 解 先凑微分,然后利用写出计算结果.即C u f u d u f +='⎰)()(. 7 ..⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1例18 计算不定积分.⎰+dx x x )1(124 【提示】 分母中有时,考虑用“倒代换”.k x tx 1=解 设,则,t x 1=dt tdx 21-=4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+.3111arctan 3C x x x=-+-+例19 求不定积分.⎰+dx x x )4(16解 ⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 . 1ln 244t C t =++661ln 244x C x =++分部积分.⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分目的,使公式右边的积分要比左边的积分容易计算,u vdx '⎰⎰'dx v u 关键在于正确地选取和凑出.u. 8 .例 20 求不定积分.⎰dx xxarcsin 解一 这是一道综合题,先作变量代换,再分部积分.令,x t =则,,2t x =tdt dx 2= ⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=td t t t arcsin arcsin 2⎰--=dtttt t 212arcsin 222arcsin (1)t t t =+- Ct t t +-+=212arcsin 2.C x x x +-+=12arcsin 2解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2 ⎰--=dt tt t t 212arcsin 2.C t t t +-+=212arcsin 2C x x x +-+=12arcsin 2例 21 已知的一个原函数是,求.)(x f 2x e-⎰'dx x f x )(【提 示】 不必求出,直接运用分部积分公式.)(x f '解 由已知条件,,且,故)(x f ()'=-2x e ⎰dx x f )(C e x +=-2⎰⎰=')()(x xdf dx x f x ⎰-=dxx f x xf )()(()Ceex x x +-'=--22. 9 ..C e e x x x +--=--2222例 22 设,求.x x x f ln )1()(ln +=')(x f 解 先求出的表达式.设,则,)(x f 't x =ln t e x =)1()(+='t e t t f ⎰+=dt e t t f t )1()(⎰⎰+=tdttde t,22t dt e te tt +-=⎰C t e te tt ++-=22所以.C x e xe x f x x++-=2)(2例23 求不定积分.5432x x dx x x+--⎰解 将分子凑成,23332()()2x x x x x x x x x x -+-+-++-把分式化为多项式与真分式的和;542233221x x x x x x x x x x+-+-=+++--再将真分式化为最简分式的和,232x x x x+--,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰.322ln ln 132x x x x x C =+++-++. 10 .例24 求不定积分.⎰+-dx x x x )1(188解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x (换元,令)⎰+-=du u u u )1(1818x u =⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81.()C x x ++-=81ln 41||ln 例25 求不定积分.⎰+dx xsin 11解 ⎰⎰--=+dx xx dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1.⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan 例26 求不定积分.⎰+++++dx x x x)11()1(11365解 为同时去掉三个根式,设,则,,t x =+6116-=t x dt t dx 56= dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t +-+=+⎰⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116()C t t t +++-=arctan 61ln 3322.()3311ln 313x x ++-+=C x +++61arctan 6。
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
习题课(六)内容: 不定积分的概念及积分方法基本要求:1.理解原函数与不定积分的概念。
2.掌握不定积分的性质及不定积分与导数的关系。
3.掌握不定积分的积分方法。
4.会求简单的有理函数、无理函数、三角函数有理式的不定积分。
内容与方法精讲:一.原函数与不定积分的概念1. 原函数定义:在区间I上,若)()(x f x F ='(即dx x f x dF )()(=),称函数)(x F 是函数)(x f 在区间I 上的一个原函数。
2. 原函数存在的条件:若函数)(x f 在区间I上连续。
则)(x f 在区间I上有原函数。
3. 不定积分:函数)(x f 在区间I上的所有原函数C x F +)(称为)(x f 在区间I 上的不定积分,记作⎰+=C x F dx x f )()(.4. 不定积分与导数的关系:(1)先积分再求导(或微分)⎰=')(])([x f dx x f ,或 ⎰=dx x f dx x f d )(])([;(2)先求导(或微分)再积分C x F dx x F +='⎰)()(,或 ⎰+=C x F x dF )()(.5. 不定积分的线性性:(1)⎰⎰=dx x f k dx x kf )()(;(2)⎰⎰⎰±=±dx x g dx x f dx x g x f )()()]()([.二.基本积分公式(略) 三.不定积分的方法1. 拆项积分法:利用不定积分的线性性,将一个复杂的不定积分拆成若干个基本积分公式中的积分,从而进行积分。
(关键体现在拆项上,例如:通过有理化;利用三角公式;在分子上加一项,减一项等都是常用的手段)。
2. 凑微分法:C x F x d x f dx x x f +=='⎰⎰)]([)()]([)()]([ϕϕϕϕϕ.主要用来解决复合函数的积分(确切地说是复合函数与之间变量导数之积的积分)。
要熟练常用的几个凑微分式子:(1)⎰⎰++=+)()(1)(b ax d b ax f adx b ax f )0(≠a ; (2))0()()(1)(1111≠++=+----⎰μμμμμμa b ax d b ax f a dx b ax f x ;(3)⎰⎰=x d x f dx xx f ln )(ln )(ln ; (4)x x x x de e f dx e f e )()(⎰⎰=; (5)⎰⎰=+x d x f dx x x f arctan )(arctan 1)(arctan 2;(6)⎰⎰=-x d x f dx xx f arcsin )(arcsin 1)(arcsin 2;(7)⎰⎰=x d x f xdx x f sin )(sin cos )(sin ; (8)⎰⎰-=dconx x f xdx x f )(cos sin )(cos ; (9)⎰⎰=x d x f xdx x f tan )(tan sec )(tan 2; (10)⎰⎰=x d x f xdx x x f sec )(sec tan sec )(sec ; (11).)(ln )()()()(C x f x f x df dx x f x f +=='⎰⎰多用于解决无理函数的积分。