故曲线y=f(x)在点P(x0 ,f(x0))处的切线方程是:
y f ( x0 ) f ( x0)( x x0 )
第九页,编辑于星期日:十五点 一分。
题型:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
解:y
|x1
lim
x0
3(1
x)2 x
3
12
lim 3x2 6x
要注意,曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限来判断与求解.如有极限,则在此点 有切线,且切线是唯一的;如不存在,则在此点处无切线; 3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚
至可以无穷多个.
第八页,编辑于星期日:十五点 一分。
导数的几何意义
函数 y=f(x)在点x0处的导数的几何意义,就是曲 线 y=f(x)在点P(x0 ,f(x0))处的切线的斜率,即曲线y= f(x)在点P(x0 ,f(x0)) 处的切线的斜率是 f ( x0 ).
x
点P处的切线。
此处切线定义与以前的定义有何不同?
第五页,编辑于星期日:十五点 一分。
y
圆的切线定义并不适用
l1 于一般的曲线。
NAo
通过逼近的方法,将割 线趋于的确定位置的直
Imagel2
线定义为切线(交点可能
B
不惟一)适用于各种曲线
x 。所以,这种定义才真
C
正反映了切线的直观本
质。
第六页,编辑于星期日:十五点 一分。
k f (x0 )
②再利用点斜式求出切线方程
y f ( x0 ) f ( x0)( x x0 )
第十七页,编辑于星期日:十五点 一分。