(完整版)五年级奥数练习题
- 格式:doc
- 大小:119.51 KB
- 文档页数:14
五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。
2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。
答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。
总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。
不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。
希望大家能够通过不断的练习和思考,提高自己的数学水平。
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/422.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。
现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。
⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。
如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。
现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。
已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。
单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。
甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。
现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。
五年级小学生奥数题及答案大全1.五年级小学生奥数题及答案大全篇一1、火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。
甲乙两城相距多少千米?2、甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3、小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?参考答案:1、200+200÷4=250(千米)2、210÷(210÷6+7)=5(小时)3、60×14÷(60+10)=12(分钟)2.五年级小学生奥数题及答案大全篇二1、一个平行四边形,四条边长度相等,都是5厘米,高是3厘米求这个平行四边形面积是多少?2、一个长方形长是18厘米,宽是长的一半多2厘米,求这个长方形面积和周长分别是多少?3、一个正方形边长9厘米,把它分成四个相等大小的小正方形,请问小正方形的面积是多少?参考答案:1、5×3=15(平方厘米)2、18÷2+2=11(厘米)面积是:18×11=198(平方厘米)周长是:(18+11)×2=58(厘米)3、9×9÷4=20.25(平方厘米)3.五年级小学生奥数题及答案大全篇三1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米4.五年级小学生奥数题及答案大全篇四1、将一个四位数的数字顺序颠倒过来,得到一个新的四位数。
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
小学五年级数学奥数题五篇1.小学五年级数学奥数题1、用一个数去除30、60、75,都能整除,这个数是多少?答案:∵要求的数去除30、60、75都能整除,要求的数是30、60、75的公约数。
又∵要求符合条件的的数,就是求30、60、75的公约数。
解:∵(30,60,75)=53=15这个数是15。
2、以除代乘①48×25②568×125③3.44×0.05分析与解①48×25=48×(25×4)÷4=4800÷4=1200②568×125=568×(125×8)÷8=568000÷8=71000③344×0.05=344×5×0.0001=344×10÷2×0.001=0.0172一分数分别与5、25、125相乘,可以先把这个数分别扩大10倍、100倍、1000倍,然后再分别除以2、除以4、除以8,这种方法叫做以除代乘法。
2.小学五年级数学奥数题1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12.5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
(完整)小学五年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一个数的3倍加上6,再减去9,结果是12,求这个数。
解:先从结果逆推,12加上9得到21,再减去6得15,最后除以3得到这个数是5。
思路:按照运算的逆顺序逐步还原。
2.有五个连续自然数的和是100,这五个连续自然数分别是多少?解:设中间的数为x,则这五个数依次是x-2,x-1,x,x+1,x+2,它们的和为5x=100,解得x=20,所以这五个连续自然数是18,19,20,21,22。
思路:利用连续自然数的特点设中间数简化计算。
3.一个长方形的周长是30厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米,根据周长公式可得(x+2x)×2=30,解得x=5,长为10厘米,面积为5×10=50平方厘米。
思路:根据周长公式列方程求解长和宽,再计算面积。
4.甲乙两数的和是25,甲数比乙数的2倍大1,求甲乙两数分别是多少?解:设乙数为x,则甲数为2x+1,根据和是25可列方程x+2x+1=25,解得x=8,甲数为17。
思路:通过设未知数表示甲乙两数,依据和的关系列方程。
5.一个三角形的面积是36平方厘米,底是9厘米,求高是多少厘米?解:根据三角形面积公式,面积×2÷底=高,即36×2÷9=8厘米。
思路:运用三角形面积公式的变形来求解高。
6.有一堆苹果,平均分给8个人,每人分5个后还剩下3个,这堆苹果一共有多少个?解:8×5+3=43个。
思路:先算出分出去的苹果数再加上剩余的。
7.小明和小红同时从相距500米的两地相向而行,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?解:根据相遇时间=路程÷速度和,500÷(60+40)=5分钟。
思路:运用相遇问题的公式求解。
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学五年级奥数题集锦及答案1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。
2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。
3. 一个数的3倍是45,这个数是多少?答案:这个数是15。
4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。
5. 一个数加上12等于36,这个数是多少?答案:这个数是24。
6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。
7. 一个数的4倍是64,这个数是多少?答案:这个数是16。
8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。
9. 一个数的5倍是100,这个数是多少?答案:这个数是20。
10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。
11. 一个数的6倍是72,这个数是多少?答案:这个数是12。
12. 一个数减去15得到30,这个数是多少?答案:这个数是45。
13. 一个数的7倍是49,这个数是多少?答案:这个数是7。
14. 一个数的8倍是64,这个数是多少?答案:这个数是8。
15. 一个数的9倍是81,这个数是多少?答案:这个数是9。
16. 一个数的10倍是100,这个数是多少?答案:这个数是10。
17. 一个数的11倍是121,这个数是多少?答案:这个数是11。
18. 一个数的12倍是144,这个数是多少?答案:这个数是12。
19. 一个数的13倍是169,这个数是多少?答案:这个数是13。
20. 一个数的14倍是196,这个数是多少?答案:这个数是14。
21. 一个数的15倍是225,这个数是多少?答案:这个数是15。
22. 一个数的16倍是256,这个数是多少?答案:这个数是16。
23. 一个数的17倍是289,这个数是多少?答案:这个数是17。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数练习题(五篇)》,希望帮助到您。
⼩学五年级奥数练习题篇⼀ 1、学校买来两种粉笔共240盒,已知⽩⾊粉笔的盒数是彩⾊粉笔的5倍。
两种粉笔各买了多少盒? 2、师傅和徒弟3⼩时共⽣产零件90个,已知师傅每⼩时做的零件个数是徒弟的2倍,师傅和徒弟每⼩时各做多少个零件? 3、哥哥和弟弟共有48本书,弟弟给哥哥5本后,哥哥的书就是弟弟的3倍,哥哥、弟弟原来各有⼏本书? 4、甲⼄两个粮仓共有粮⾷230吨,后来从甲仓运出50吨,⼄仓运进20吨,这时⼄仓的粮⾷是甲仓的3倍,甲⼄两仓原来各有粮⾷多少吨? 5、某校三年级和四年级共有学⽣372⼈,三年级的⼈数⽐四年级⼈数的2倍多36⼈,该校三、四年级各有学⽣多少⼈? 6、动物园的猴⼭上共有180只猴。
⼤猴⼦的只数⽐⼩猴⼦的3倍少8只。
猴⼭上⼤⼩猴⼦各有多少只? 7、有红、黄、蓝三种颜⾊的玻璃球共270个,黄球的个数是红球的2倍,蓝球的个数是黄球的3倍,三种颜⾊的玻璃球各有多少个? 8、书架上层有46本书,下层有22本书,要使上层的书是下层书的3倍,那么必须从下层拿⼏本书放到上层去? 9、两个数相除,商3余10,被除数、除数、商与余数的和是163,求被除数和除数分别是多少? 10、果园⾥有桃树、梨树、苹果树共552棵。
桃树⽐梨树的2倍多12棵,苹果树⽐梨树少20棵,求桃树、梨树和苹果树各有多少棵?⼩学五年级奥数练习题篇⼆ 1、有⼈说:“任何7个连续整数中⼀定有质数。
”请你举⼀个例⼦,说明这句话是错的。
2、从⼩到⼤写出5个质数,使后⾯的数都⽐前⾯的数⼤12。
3、9个连续的⾃然数,它们都⼤于80,那么其中质数最多有多少个? 4、⽤1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要⽤到并且只能⽤⼀次,那么这9个数字最多能组成多少个质数? 5、已知⼀个两位数除1477,余数是49。
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学五年级奥数题库100道及答案(完整版)题目1:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 120,所以被减数= 60。
又因为减数是差的3 倍,设差为x,则减数为3x,所以4x = 60,x = 15,即差等于15。
题目2:有三个连续的偶数,它们的和比其中最大的一个偶数大18,这三个连续偶数分别是多少?答案:设中间的偶数为x,则这三个连续偶数分别为x - 2,x,x + 2。
它们的和为3x。
根据题意可得3x - (x + 2) = 18,解得x = 10。
所以这三个连续偶数分别是8、10、12。
题目3:两个数相除,商是4,余数是10,被除数、除数、商和余数的和是174,被除数是多少?答案:设除数为x,则被除数为4x + 10。
由题意可得4x + 10 + x + 4 + 10 = 174,解得x = 30。
所以被除数为4×30 + 10 = 130。
题目4:一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形,原来长方形的面积是多少平方厘米?答案:设正方形的边长为x 厘米。
则原来长方形的长为(x - 2)厘米,宽为(x - 5)厘米。
可列方程:x ²- (x - 2)(x - 5) = 60,解得x = 10。
原来长方形的长为8 厘米,宽为5 厘米,面积为40 平方厘米。
题目5:甲、乙两数的和是162.8,乙数的小数点向右移动一位就等于甲数,求甲、乙两数各是多少?答案:乙数的小数点向右移动一位就等于甲数,说明甲数是乙数的10 倍。
设乙数为x,则甲数为10x,10x + x = 162.8,解得x = 14.8,甲数为148。
题目6:有一堆苹果,如果平均分给 4 个小朋友,剩下2 个;如果平均分给5 个小朋友,也剩下2 个。
这堆苹果至少有多少个?答案:求出4 和5 的最小公倍数为20,再加上2,这堆苹果至少有22 个。
第5讲速算技巧1. 4673+27689+5327+223112. 125×4×8×25×783.(485+468+321)-3584.(583+387+217)-3875. 125×(8×9)6.(25×3×50)×(4×9×2)7. 27×998.(64×24)÷89. 699000÷375÷23310. 6×(9000÷54)11. 48510÷(5×3×7×11)12.(21×15×32)÷(3×16×7)13.(7800-78)÷7814. 17+18+16+17+14+19+13+1415. 325+324+318+327+323+32016. 8+10+12+14+16+18+20+22+2417. 9999×2222+3333×333418. 100+99-98+97-96+...+3-2+119. 1996×20002000-2000×1996199620. 8958×9230-8957×923121. 86.4×0.24+43.2×0.5222. 47.3×8.4+1.6×49.823. 98+998+9998+99998+99999824. 1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)÷(8÷9)÷(9÷10)25. 1÷1999+2÷1999+3÷1999+...+1998÷199926. 100+99-98-97+96+95-94-93+...+4+3-2-127. 332×567567-332332×56728. 1377×4556-1376×455729. 0.88×1.42+0.44×7.1630. 1993×19951995-1995×19931992第9讲质因数1. 把下面六个数:33、51、65、77、85、91 分成两组,使每组乘积相等,应当怎样分?2. 14、30、33、35、39、75、143、169分成两组,使每组的乘积相等?3.把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?4.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?5.有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?6. 下面的算式里,□里数字各不相同,求这四个数字的和。
□□×□□=19957.三个质数的和是80,这三个数的积最大可以是多少?8.长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?9.237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。
10.有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,这4个孩子中最大的几岁?11.有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长。
12. 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?13.把155/186和221/187约分14.小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。
小明买了多少张画片?15.求2310的约数中,除它本身以外最大的约数是多少?16.自然数a乘以2376,所得的积正好是自然数b的平方,求a最小是多少?17.有三个质数,它们的乘积是1001,这三个质数各是多少?18.张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。
求张明的成绩、名次和年龄分别是多少?19.有三个学生,他们的年龄恰好一个比另一个大2岁,而他们的年龄的乘积为2688.那么他们的年龄各是多少?20.马鹏和李虎计算甲、乙两个大于1的自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407.那么,甲、乙两数的乘积应是多少?21.育才小学师生为贫困地区捐款1995元,这所学校共有35名教师,14个教学班,各班的学生人数相同,且多于30人,不超过45人。
如果每人平均捐款的钱数都是整元数,那么该校有学生多少人?平均每人捐款多少元?第10讲公约数、公倍数1.甲数是36,甲乙两数的最小公倍数是288,最大公因数是4,乙数是多少?2.两个数的最大公因数是60,最小公倍数是720,其中一个数是180,这两个数的差是多少?3.某合唱队有若干人,如果12人站一排,余5人;如果15人站一排,还余5人。
这个合唱队至少有多少人?4.有一批水果,如果每箱放30个,则多20个;每箱放35个,则少10个,这批水果至少有多少个?5.将一块长80米,宽60米的长方形土地划分成面积相等的小正方形,每个小正方形的面积最大是多少?6.用长24厘米,宽20厘米的砖铺地,若铺成一个正方形,至少需要多少块这样的砖?7.把52块水果糖和39块巧克力分别平均分给一个组的同学,结果水果糖剩下2块,巧克力剩下4块,这个组最多有几位同学?8.小刚有一盒巧克力糖,7粒一数还余4粒,5粒一数又少了3粒,3粒一数正好,这盒巧克力至少有多少粒?9.用96朵红花和72朵白花扎成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每个花束至少有几朵花?10.有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?11.加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?12.一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?13.一张长方形纸,长2703厘米,宽1113厘米.要把它截成若干个同样大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米?14.求1008、1260、882和1134四个数的最大公约数是多少?15.某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?16.3月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(第二天),15日(第三天),…)的第1993天是星期几?17.将长、宽、高分别为6㎝、4㎝、8㎝的长方体积木,叠成最小的正方体,最少要积木多少块?18.教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工。
问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?第11讲数的整除1.在865后面补上3个数字,组成一个能被3、4、5整除的六位数,这个六位数最小是多少?2.将1、2、3、4、5、6、7、8、9重复写下去组成一个2012位数,那么这个数能否被9整除?如果不能,请说出余数是多少?3.判断1059282是否是7的倍数?4.判断3546725能否被13整除?5.李老师为学校一共买了28支价格相同的钢笔,共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?6.36、60、87、95、104、123、235、396、432、505、606、712、918这些数中。
能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。
你还能找出哪些数是6的倍数吗?______________________________________。
7.126、248、368、472、582、1234、5678、2468、2340、97532这些数中能被4整除的数有_______________________________;8的倍数有____________________。
你还能找出12的倍数吗?___________________________________。
8.在□内填上合适的数字,使五位数4□32□能被9整除.9.一个整数a与108的乘积是一个完全平方数.求a的最小值与这个平方数。
10.225×72×(),要使这个连乘积的最后四个数字都是0,在括号内最小应填什么自然数?11.个位数是6,且能被3整除的三位数有多少个?12.用1,2,3,4这四个数码可以组成24个没有重复数字的四位数,其中能被11整除的有哪几个?13.一个三位数能被11整除,去掉末位数字后所得的两位数能被9整除,这样的三位数有哪些?14.小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。
你能帮助小马虎找出不明数字吗?15. 在□内填上适当的数字,使七位数98765□能被4整除。
16.五位数4□56□能被9整除。
这个五位数可能是多少?(至少写出三个)( )、()、()。
17.在65后面补上2个数字,组成一个四位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
18.在□内填上合适的数字,使□679□能同时被8、9整除。
19.把一个三位数的百位和个位上的数字互换,得到一个新的三位数,新、旧两个三位数都能被4整除。
这样的三位数共有多少个?20.173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?21.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.第15讲 图形问题1. 如图,BC=CE ,AD=CD ,求三角形ABC 的面积是三角形CDE 面积的几倍?2.如图,三角形ABC 的面积为1,并且AE=3AB ,BD =2BC ,那么△BDE 的面积是多少?3. 如下图.在图中三角形ABE 、ADF 和四边形AECF 的面积相等,求三角形AEF 的面积。