MSA计数型Kappa分析
- 格式:pptx
- 大小:2.40 MB
- 文档页数:20
MSA分析MSA(Kappa)分析是一种常用的可靠性分析方法,用于评估两个或多个评价者在分类测量任务中的一致性。
在医学、社会科学、市场研究和质量控制等领域中广泛应用。
本文将介绍MSA(Kappa)分析的基本背景、计算公式以及如何对数据进行解读。
1.背景在实际操作中,评价者可能会对同一对象进行分类,但每个评价者的主观判断可能存在差异,导致结果不一致。
为了度量这种一致性,MSA (Kappa)分析应运而生。
它可以用来评估评价者之间的一致性水平,以便确定评价者是否具有一致的分类标准。
2.计算公式MSA(Kappa)分析的计算基于一个叫做Kappa系数(κ)的统计指标。
Kappa系数用于评估评价者之间的一致性程度,其取值范围为[-1, 1]。
Kappa系数为正值时表示评价者之间具有一致性,为负值时表示评价者之间具有不一致性,为0时表示评价者的一致性程度与随机分类的一致性相当。
Kappa系数的计算公式为:Pr(a)-Pr(e)κ=--------------------------1-Pr(e)其中,Pr(a)为评价者之间的一致性概率,Pr(e)为评价者独立分类的概率。
在实际应用中,这两个概率可以通过计算评价者的分类结果来进行估算。
3.数据解读根据计算得到的Kappa系数,我们可以对评价者的一致性做出以下解读:-κ>0.75:评价者之间具有很高的一致性-κ=0.40-0.75:评价者之间具有一致性,但仍存在一定程度的不一致性-κ<0.40:评价者之间的一致性水平较低此外,我们还可以通过Kappa系数的置信区间来评估评价者的一致性。
如果置信区间跨越了0,表明评价者的一致性不显著;如果置信区间不包含0,表明评价者的一致性显著。
4. MSA(Kappa)分析的应用MSA(Kappa)分析广泛应用于医学领域、社会科学、市场研究和质量控制等领域。
例如,在医学领域中,医生对疾病的诊断和病情的评估可能存在主观判断的差异,MSA(Kappa)分析可以用于评估医生之间的一致性,从而提高医疗诊断的准确性和可靠性。
6.136.13 计数型测量系统分析计数型测量系统分析——————假设试验分析法假设试验分析法假设试验分析法((Kappa Kappa))说明:参照张智勇所著《ISO/TS16949五大工具最新版一本通》(机械工业出版社)编写。
计数型测量系统的分析是为了确定不同班次,不同生产线的检查人员是否能正确地区分合格品和不合格品,分析出测量结果与标准值的符合程度,以及他们自身和相互之间重复检查的一致程度。
假设试验分析—交叉表法是一种常用的计数型测量系统分析方法。
交叉表法可以在基准值(分析用样品称为基准,用计量型测量系统对样品进行测量,测量值称为基准值)已知的情况下进行,也可以在基准值未知的情况下进行。
在基准值未知的情况下进行,可以评价测量人之间的一致性,但不能评价测量系统区分好与不好的能力。
在基准值已知的情况下,即可评价测量人之间的一致性,又能评价测量人员与基准值的一致性,以及测量的有效性、漏判率和误判率,从而判断出测量人区分合格和不合格零件的能力。
6.136.13.1 .1 .1 未知基准值的一致性分析未知基准值的一致性分析1)随机选取g=50(一般选取g=30~50个样本)个能够覆盖过程范围的零件,对这些零件进行编号。
零件的编号不要让测量人知道,但分析人应该知道。
2)由3名评价人以随机盲测的方式测量所有零件各m=3次,每人测量次数为n=g×m=50×3=150次。
“接受”记为“1”,“拒绝”记为“0”,将三人所测150×3=450个数据记录于表6-21中。
测量时应按这样的规则进行:先让A 测量人以随机顺序对50个零件进行第1轮测量,然后让B 测量人、C 测量人以随机顺序进行第1轮测量,再让A 测量人进行第2轮测量,以此类推,完成测量工作。
表6-21 计数型测量系统分析数据表零件测量人A 测量人B 测量人C基准基准值代码A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-31 1 1 1 1 1 1 1 1 1 1 0.476 901 +2 1 1 1 1 1 1 1 1 1 1 0.509015 +3 0 0 0 0 0 0 0 0 0 0 0.576459 -4 0 0 0 0 0 0 0 0 0 0 0.566152 -5 0 0 0 0 0 0 0 0 0 0 0.57036 -6 1 1 0 1 1 0 1 0 0 1 0.544 951 ×7 1 1 1 1 1 1 1 0 1 1 0.465454 ×8 1 1 1 1 1 1 1 1 1 1 0.502295 +9 0 0 0 0 0 0 0 0 0 0 0.437817 -10 1 1 1 1 1 1 1 1 1 1 0.515573 +11 1 1 1 1 1 1 1 1 1 1 0.488905 +12 0 0 0 0 0 0 0 10 0 0.559918 ×13 1 1 1 1 1 1 1 1 1 1 0.542704 +14 1 1 0 1 1 1 1 0 0 1 0.454518 ×15 1 1 1 1 1 1 1 1 1 1 0.517377 +16 1 1 1 1 1 1 1 1 1 1 0.531939 +17 1 1 1 1 1 1 1 1 1 1 0.519694 +18 1 1 1 1 1 1 1 1 1 1 0.484167 +19 1 1 1 1 1 1 1 1 1 1 0.520496 +20 1 1 1 1 1 1 1 1 1 1 0.477236 +21 1 1 0 1 0 1 0 1 0 1 0.452310 ×22 0 0 1 0 1 0 1 10 0 0.545604 ×23 1 1 1 1 1 1 1 1 1 1 0.529065 +24 1 1 1 1 1 1 1 1 1 1 0.514192 +25 0 0 0 0 0 0 0 0 0 0 0.599581 -26 0 1 0 0 0 0 0 0 1 0 0.547204 ×27 1 1 1 1 1 1 1 1 1 1 0.502436 +28 1 1 1 1 1 1 1 1 1 1 0.521642 +29 1 1 1 1 1 1 1 1 1 1 0.523754 +30 0 0 0 0 0 1 0 0 0 0 0.561457 ×31 1 1 1 1 1 1 1 1 1 1 0.503091 +32 1 1 1 1 1 1 1 1 1 1 0.505850 +33 1 1 1 1 1 1 1 1 1 1 0.487613 +34 0 0 1 0 0 1 0 1 1 0 0.449696 ×35 1 1 1 1 1 1 1 1 1 1 0.498698 +36 1 1 0 1 1 1 1 0 1 1 0.543077 ×37 0 0 0 0 0 0 0 0 0 0 0.409238 -38 1 1 1 1 1 1 1 1 1 1 0.488184 +39 0 0 0 0 0 0 0 0 0 0 0.427687 -40 1 1 1 1 1 1 1 1 1 1 0.501132 +41 1 1 1 1 1 1 1 1 1 1 0.513779 +42 0 0 0 0 0 0 0 0 0 0 0.566575 -43 1 0 1 1 1 1 1 1 0 1 0.462410 ×44 1 1 1 1 1 1 1 1 1 1 0.470832 +45 0 0 0 0 0 0 0 0 0 0 0.412453 -46 1 1 1 1 1 1 1 1 1 1 0.493441 +47 1 1 1 1 1 1 1 1 1 1 0.486379 +48 0 0 0 0 0 0 0 0 0 0 0.587893 -49 1 1 1 1 1 1 1 1 1 1 0.483803 +50 0 0 0 0 0 0 0 0 0 0 0.446697 -3)根据表6-21中的0和l 数据的结果将评价人A 和B、B 和C、A 和C 利用交叉表方法进行统计(见表6-22),A*B 栏中“0*0”代表A、B 两人均判拒绝的次数,统计有44个;“0*1”代表A 判拒绝而B 判接受的次数,统计有6个;“1*0”代表A 判接受而B 判拒绝的次数,统计有3个;“1*1”代表AB 两人同时判为接受的次数,统计有97个,将统计结果依次填入表6-22中。
计数型MSA:Kappa分析中“期望计数”的计算方法我们仍用MSA手册中的例子来做说明。
两评价人A和B分别对随机抽取的50个零件进行测量,对每个零件的测量随机地重复了3次。
设定1表示可接受的决定(即评为1类),0表示不可接受的决定(即评为0类)。
测量结果用以下交叉表列出。
科恩(Cohen)给出的Kappa计算公式为:MSA手册中定义P0为对角栏框中(观测)计数占总计数的比例,Pe为对角栏框中期望计数占总计数的比例。
(第三版中文MSA手册中翻译有误,这里是按英文版翻译过来的)(观测)计数容易理解,如对角栏框中的44表示A和B都评为0类的测量次数,97表示A 和B都评为1类的测量次数,而6则表示A评为0类但B评为1类的测量次数,3则表示A评为1类但B评为0类的测量次数。
因此,,P0也就是评价人A和B在测量中实际一致性的比率。
那期望计数是指什么呢?假如这两位评价人都是任意地(猜测)将50 个零件判定为可接受或不可接受,其结果也会达到一定程度的一致,不过这里的一致是偶然达到的,这种偶然达到的一致性比率称为偶然一致性比率,也就是Kappa计算中的Pe。
当评价人A 与B 随机地作评价时,此两人行动一定是独立的,互不影响,从而两人同评为0 类的概率为P0+×P+0,两人同评为1 类的概率为P1+×P+1。
(这里P0+表示A评价人评为0类的测量次数占总测量次数的比率,P1+表示A评价人评为1类的测量次数占总测量次数的比率;同理P+0、P+1分别表示B评价人评为0类的测量次数占总测量次数的比率,和B评价人评为1类的测量次数占总测量次数的比率。
这时偶然一致性比率Pe = P0+×P+0+ P1+×P+1。
因此,这里15.7和68.7分别就是两评价人同时评为0类和1类的期望计数,分别为对应单元格行总计数乘以列总计数除以总计数(即总测量次数)所得。
同样31.3和34.3这两个期望计数也是按同样方式得出的。