铁碳合金相图考点分心
- 格式:doc
- 大小:195.00 KB
- 文档页数:13
铁碳合金相图从某种意义上讲,铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
一、铁碳合金中的基本相铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C 相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
1,铁素体(ferrite)铁素体是碳在α-Fe中的间隙固溶体,用符号"F"(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性.铁碳合金中的基本相铁素体的力学性能特点是塑性,韧性好,而强度,硬度低.δ=30%~50%,AKU=128~160J σb=180~280MPa,50~80HBS.铁碳合金中的基本相铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围.铁碳合金中的基本相2,奥氏体(Austenite )奥氏体是碳在γ-Fe中的间隙固溶体,用符号"A"(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%.铁碳合金中的基本相在一般情况下, 奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓"趁热打铁"正是这个意思.σb=400MPa,170~220HBS,δ= 40%~50%.另外奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件.铁碳合金中的基本相奥氏体的组织与铁素体相似,但晶界较为平直,且常有孪晶存在.铁碳合金中的基本相3,渗碳体(Cementite)渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式"Fe3C"表示.它的碳质量分数Wc=6.69%,熔点为1227℃, 质硬而脆,耐腐蚀.用4%硝酸酒精溶液浸蚀后,在显微镜下呈白色,如果用4%苦味酸溶液浸蚀,渗碳体呈暗黑色.铁碳合金中的基本相渗碳体是钢中的强化相,根据生成条件不同渗碳体有条状,网状,片状,粒状等形态,它们的大小,数量,分布对铁碳合金性能有很大影响.铁碳合金中的基本相总结:在铁碳合金中一共有三个相,即铁素体,奥氏体和渗碳体.但奥氏体一般仅存在于高温下,所以室温下所有的铁碳合金中只有两个相,就是铁素体和渗碳体.由于铁素体中的含碳量非常少,所以可以认为铁碳合金中的碳绝大部分存在于渗碳体中.这一点是十分重要的.铁和碳可以形成一系列化合物,如Fe3C,Fe2C,FeC等,有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图, 此时相图的组元为Fe和Fe3C._由于实际使用的铁碳合金其含碳量多在5%以下,因此成分轴从0~6.69%.所谓的铁碳合金相图实际上就是Fe—Fe3C相图.二、铁碳合金相图分析1铁碳相图分析Fe—Fe3C相图看起平比较复杂,但它仍然是由一些基本相图组成的,我们可以将Fe—Fe3C相图分成上下两个部分来分析.1,上半部分-------共晶转变在1148℃,4.3%C的液相发生共晶转变:Lc (AE+Fe3C),转变的产物称为莱氏体,用符号Ld表示.存在于1148℃~727℃之间的莱氏体称为高温莱氏体,用符号Ld表示,组织由奥氏体和渗碳体组成;存在于727℃以下的莱氏体称为变态莱氏体或称低温莱氏体,用符号Ldˊ表示,组织由渗碳体和珠光体组成.低温莱氏体是由珠光体,Fe3CⅡ和共晶Fe3C组成的机械混合物.经4%硝酸酒精溶液浸蚀后在显微镜下观察,其中珠光体呈黑色颗粒状或短棒状分布在Fe3C基体上,Fe3CⅡ和共晶Fe3C交织在一起,一般无法分辨.2,下半部分-----共析转变在727℃,0.77%的奥氏体发生共析转变:AS (F+Fe3C),转变的产物称为珠光体.共析转变与共晶转变的区别是转变物是固体而不非液体.3,相图中的一些特征点相图中应该掌握的特征点有:A,D,E,C,G(A3点),S(A1点),它们的含义一定要搞清楚.4, 铁碳相图中的特性线相图中的一些线应该掌握的线有:ECF线,PSK线(A1线),GS 线(A3线),ES线(ACM线)水平线ECF为共晶反应线.碳质量分数在2.11%~6.69%之间的铁碳合金, 在平衡结晶过程中均发生共晶反应.水平线PSK为共析反应线.碳质量分数为0.0218%~6.69%的铁碳合金, 在平衡结晶过程中均发生共析反应.PSK线亦称A1线.GS线是合金冷却时自A中开始析出F的临界温度线, 通常称A3线.ES线是碳在A中的固溶线, 通常叫做Acm线.由于在1148℃时A中溶碳量最大可达2.11%, 而在727℃时仅为0.77%, 因此碳质量分数大于0.77%的铁碳合金自1148℃冷至727℃的过程中,将从A中析出Fe3C.析出的渗碳体称为二次渗碳体(Fe3CII). A cm线亦为从A中开始析出Fe3CII的临界温度线.PQ线是碳在F中固溶线.在727℃时F中溶碳量最大可达0. 0218%, 室温时仅为0.0008%, 因此碳质量分数大于0.0008%的铁碳合金自727℃冷至室温的过程中, 将从F中析出Fe3C.析出的渗碳体称为三次渗碳体(Fe3CIII).PQ线亦为从F中开始析出Fe3 CIII的临界温度线.Fe3CIII数量极少,往往予以忽略.三、含碳量对铁碳合金组织和性能的影响1.含碳量对铁碳合金平衡组织的影响按杠杆定律计算,可总结出含碳量与铁碳合金室温时的组织组成物和相组成物间的定量关系2.含碳量对机械性能的影响渗碳体含量越多,分布越均匀,材料的硬度和强度越高,塑性和韧性越低;但当渗碳体分布在晶界或作为基体存在时,则材料的塑性和韧性大为下降,且强度也随之降低。
铁碳合金相图教学中重难点分析及化解作者:黄立城来源:《职业·中旬》2010年第05期学好铁碳合金相图,不但为学习后续课程打下基础,同时也培养了学生正确选择和合理使用合金材料、热处理加工工艺等能力。
但由于该部分内容较为抽象、理论性较强、知识覆盖面广,同时又缺乏具体的实验或教具可以演示、技校学生理论知识接受能力差等原因,致使铁碳合金相图成为学生学习本门课程的瓶颈。
教学中如何突破这一重难点,笔者结合多年的教学实践,提出粗浅的分析和化解方法。
一、铁碳合金相图教学内容的重点和难点1.特性点、特性线是重点铁碳合金相图描述的是铁碳合金中成分、温度与组织之间的关系,其图上的特性点和特性线是具有相同特殊物理意义的点或点的集合,简化铁碳合金相图中有7个特性点、6条特性线,12个相图组织。
要掌握好铁碳合金相图,就必须弄清楚相图上各特性点、特性线的含义,才能为正确填写相图组织打下基础,进而利用铁碳合金相图分析铁碳合金成分、组织与性能之间的关系。
2.正确画出铁碳合金相图是难点中职教材里对于铁碳合金相图虽经简化,但因含碳量不同,而又可分成若干类,各类铁碳合金随温度的变化又出现各种组织而使图面显得复杂,难于记取。
根据中技学生的特点,要准确完整画出铁碳合金相图,对于学习基础较差的学生来讲,是有相当的难度。
二、铁碳合金相图教学难点原因分析1.学生的认知能力教学过程是一个学生认知发展的过程,也是一个循序渐进的过程,需要学生不断地理解、思考、融会贯通、自我调节,使自己的认知水平不断提高。
众所周知,中技学生自身文化基础较差,学习能力低下,对于理论知识更是不感兴趣,认知能力存在较大的差异。
而铁碳合金相图是一个理论性较强的知识,学生要在较短的时间内完成认知过程,确实较为困难,这就形成了教学难点。
2.受教学条件限制《金属材料与热处理》是一门与生产实践联系较为密切的课程,教材中有许多相关的实验课题。
但限于硬件设备的不足,或缺乏对实验数据的处理和分析,或相关的实验无法进行。
五、铁碳合金考点分析重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。
基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。
铁素体:溶于α-Fe 中的间隙固溶体,为体心立方结构,常用符号F或α表示。
奥氏体塑性很好,具有顺磁性。
奥氏体:碳溶于γ-Fe中的间隙固溶体,为面心立方结构,常用符号A或γ表示。
δ铁素体:碳溶于体心立方晶格δ-Fe 中的间隙固溶体,以δ表示。
渗碳体:Fe3C,含碳量为ωC=6.69%,可用C m表示,具有很高的硬度,但塑性差,低温下具有一定的铁磁性。
Fe-Fe3C相图分析单相区——5个相图中有5个基本的相,相应的有5个相区:液相区(L)——ABCD 以上区域δ固溶体区——AHNA 奥氏体区(γ或A)——NJESGN铁素体区(α或F)——GPQG渗碳体区(Fe3C)——DFKL直线以左两相区——7个7个两相区分别存在于两个相应的单相区之间:L+δ——AHJBAL+γ——BJECBL+Fe3C——DCFD 符T C % 说明A1538 0 纯铁的熔点B1495 0.53 包晶转变时液相成分C1148 4.30 共晶点D1227 6.67 渗碳体的熔点E1148 2.11 碳在γ-Fe中的最大溶解度F1148 6.67 渗碳体的成分G912 0 纯铁α↔γ转变温度H1495 0.09 碳在δ-Fe中的最大溶解度J1495 0.17 包晶点K727 6.67 渗碳体的成分N1394 0 纯铁γ↔δ转变温度P727 0.0218 碳在α-Fe中的最大溶解度S727 0.77 共析点Q600 0.0057 600˚C碳在α-Fe中的溶解度δ+γ——HNJHγ+α——GPSGγ+ Fe3C——ESKFCEα+ Fe3C——PQLKSP+ Fe3C+三相区——3个包晶线——水平线HJB(Lδ+γ)共晶线——水平线ECF(Lγ+Fe3C)共析线——水平线PSK(γ+α+ Fe3C)包晶转变发生在1495℃(水平线HJB),反应式为:L B+δH→γJ式中L0.53——含碳量为0.53%的液相;δ0.09——含碳量为0.09%的δ固溶体;γ0.17——含碳量为0.17%的γ固溶体,即奥氏体,是包晶转变的产物。
含碳量在0.09~0.53%之间的合金冷却到1495℃时,均要发生包晶反应,形成奥氏体。
共晶转变发生在1148℃(水平线ECF),反应式为:L C→γE+Fe3C共晶转变的产物是奥氏体与渗碳体的机械混合物,称为莱氏体,用L d表示。
凡是含碳量大于 2.11%的铁碳合金冷却到1148℃时,都会发生共晶反应,形成莱氏体。
共析转变发生727℃(水平线PSK,也称为A1线),反应式为:γS→αP+Fe3C共析转变的产物是铁素体与渗碳体的机械混合物,称为珠光体,用字母P表示。
含碳量大于0.0218%的铁碳合金,冷却至727℃时,其中的奥氏体必将发生共析转变,形成珠光体。
Fe-Fe3C相图中的ES、PQ、GS三条特性线也是非常重要的,它们的含义简述如下:ES线(A cm线)是碳在奥氏体中的溶解度曲线。
奥氏体的最大溶碳量是在1148℃时,可以溶解2.11%的碳。
而在727℃时,溶碳量仅为0.77%,因此含碳量大于0.77%的合金,从1148℃冷到727℃的过程中,将自奥氏体中析出渗碳体,这种渗碳体称为二次渗碳体(Fe3C II)。
PQ线是碳在铁素体中的溶解度曲线。
727℃时铁素体中溶解的碳最多(0.0218%),而在200℃仅可以溶解7×10-7%C。
所以铁碳合金由727℃冷却到室温的过程中,铁素体中会有渗碳体析出,这种渗碳体称为三次渗碳体(Fe3C III)。
由于三次渗碳体沿铁素体晶界析出,因此对于工业纯铁和低碳钢影响较大;但是对于含碳量较高的铁碳合金,三次渗碳体(含量太少)可以忽略不计。
GS线(A3线)是冷却过程中,奥氏体向铁素体转变的开始线;或者说是加热过程中,铁素体向奥氏体转变的终了线(具有同素异晶转变的纯金属,其固溶体也具有同素异晶转变,但其转变温度有变化)。
五. 填图 1: A、B、C、D各是什么相区?写出共析反应式并指出在Fe-FeC相图中指出45、T8、T12钢的室温组织。
31.解:A:γ、B:L+γ、C:α+γ、D:γ+二次渗体2.共析反应式:γS→α+Fe3CP45钢的室温组织: α+PT8钢的室温组织:PT12钢的室温组织:P+二次Fe3C2.T12钢加热到Ac1以上,用下图的各种方法冷却,分析其所得到的组织。
2解:a ——M + A′+ Fe3CⅡb ——B下+ M +A′+ Fe3CⅡc —— B下 + Fe3CⅡ3.共析钢加热到相变点以上,用下图的冷却曲线冷却,各应得到什么组织?a ——M + A′;b ——M + A′;c ——T + M + A′d —— B下;e —— S ;f —— P ;g —— P ;5.画出 Fe-Fe 3C 相图,指出图中 S 、C 、E 、P 、N 、G 及 GS 、SE 、PQ 、PSK 各点、线的意义,并标出各相区的相组成物和组织组成物。
C :共晶点1148℃ 4.30%C ,在这一点上发生共晶转变,反应式:C Fe A Lc E 3+⇔,当冷到1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物——莱氏体()()C Fe A Le E 3+→E :碳在Fe -γ中的最大溶解度点1148℃ 2.11%C G :Fe Fe -⇔-γα同素异构转变点(A 3)912℃ 0%C H :碳在Fe -δ中的最大溶解度为1495℃ 0.09%C J :包晶转变点1495℃ 0.17%C 在这一点上发生包晶转变,反应式:J H B A L ⇔+δ当冷却到1495℃时具有B点成分的液相与具有H 点成分的固相δ反应生成具有J 点成分的固相A 。
N :Fe Fe -⇔-δγ同素异构转变点(A 4)1394℃ 0%C P :碳在Fe -α中的最大溶解度点 0.0218%C 727℃ S :共析点727℃ 0.77%C 在这一点上发生共析转变,反应式:c Fe F A p s 3+⇔,当冷却到727℃时从具有S 点成分的奥氏体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物——珠光体P (c Fe F p 3+)ES 线:碳在奥氏体中的溶解度曲线,又称Acm 温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以C Fe 3形式析出,所以具有0.77%~2.11%C 的钢冷却到Acm 线与PSK 线之间时的组织ⅡC Fe A 3+,从A 中析出的C Fe 3称为二次渗碳体。
GS 线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A 3线,GP 线则是铁素体析出的终了线,所以GSP 区的显微组织是A F +。
PQ 线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少,多余的碳以C Fe 3形式析出,从F 中析出的C Fe 3称为三次渗碳体ⅢC Fe 3,由于铁素体含碳很少,析出的ⅢC Fe 3很少,一般忽略,认为从727℃冷却到室温的显微组织不变。
PSK 线:共析转变线,在这条线上发生共析转变C Fe F A P S 3+⇔,产物(P )珠光体,含碳量在0.02~6.69%的铁碳合金冷却到727℃时都有共析转变发生。
5简述 Fe-Fe 3C 相图中三个基本反应:包晶反应,共晶反应及共析反应,写出反应式,标出含碳量及温度。
答:共析反应:冷却到727℃时具有S 点成分的奥氏体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物。
γ0.8−−→−æ727F 0.02+Fe 3C 6.69 包晶反应:冷却到1495℃时具有B 点成分的液相与具有H点成分的固相δ反应生成具有J 点成分的固相A 。
L 0.5+δ0.1−−→−æ1495γ0.16 共晶反应:1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物。
L 4.3−−→−æ1147γ2.14+ Fe 3C 6.695.何谓金属的同素异构转变?试画出纯铁的结晶冷却曲线和晶体结构变化图。
答:由于条件(温度或压力)变化引起金属晶体结构的转变,称同素异构转变。
5.为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe 的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。
5.何谓铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)?它们的结构、组织形态、性能等各有何特点?答:铁素体(F):铁素体是碳在Feα中形成的间隙固溶体,-为体心立方晶格。
由于碳在Fe -α中的溶解度`很小,它的性能与纯铁相近。
塑性、韧性好,强度、硬度低。
它在钢中一般呈块状或片状。
奥氏体(A ):奥氏体是碳在Fe -γ中形成的间隙固溶体,面心立方晶格。
因其晶格间隙尺寸较大,故碳在Fe -γ中的溶解度较大。
有很好的塑性。
渗碳体(Fe 3C ):铁和碳相互作用形成的具有复杂晶格的间隙化合物。
渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。
在钢中以片状存在或网络状存在于晶界。
在莱氏体中为连续的基体,有时呈鱼骨状。
珠光体(P ):由铁素体和渗碳体组成的机械混合物。
铁素体和渗碳体呈层片状。
珠光体有较高的强度和硬度,但塑性较差。
莱氏体(Ld ):由奥氏体和渗碳体组成的机械混合物。
在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。
由于渗碳体很脆,所以莱氏体是塑性很差的组织。
5.Fe-Fe 3C 合金相图有何作用?在生产实践中有何指导意义?又有何局限性?答:①碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。
铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。
②为选材提供成分依据:C Fe F 3+相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏。
对于锻造:根据相图可以确定锻造温度。
对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:C Fe F 3+相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择。