卫星通信基础知识37499
- 格式:doc
- 大小:158.51 KB
- 文档页数:11
卫星通信基础知识第一节电磁波常识一、电磁波振动的电场和磁场在空间的传播叫做电磁波。
由收音机收到的无线电广播信号,由电视机收到的高频电视信号, 医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。
二、电磁波的频率、波长人们用频率、波长和波速来描述电磁波的性质。
频率是指在单位时间内电场强度矢量E (或磁场强度矢量H)进行完全振动的次数,通常用f表示。
波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用入表示。
波速是指电磁波在单位时间内传播的距离,通常用v表示。
频率f,波长入,和波速v 之间满足如下关系:v=Xf如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz , 在国际单位制中,波速的单位是m/s(米/秒),波长的单位是m(米), 频率的单位是Hz.对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。
例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000 米除98,000,000Hz,等于3.06 米。
不同的频率的(或不同波长)电磁波具有不同的性质用途。
人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(lGHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。
频率在3 X1011HZ-4X 1014Hz之间的波称为红外线, 它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84X 1014HZ-7.69X 1014Hz之间的波为1417可见光,它能引起人们的视觉,频率在8X10Hz-3X10Hz 之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3X1017 Hz-5X 1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。
卫星通讯知识点归纳总结一、卫星通讯基础知识1.卫星通讯的概念卫星通讯是利用卫星作为信号中继站,进行远距离通讯的一种通讯方式。
通过卫星,可以实现全球范围内的通讯覆盖,能够跨越地面的地理障碍,适用于广域通信、广播、电视等多种通讯应用。
2.卫星通讯的原理卫星通讯是通过地面站发射信号到卫星,再由卫星转发信号到目标地点的过程。
具体而言,地面站发射的信号经过天线传输到卫星上,再由卫星的转发器转发到另一地面站或用户终端,实现通讯目的。
3.卫星通讯的组成卫星通讯系统包括地面站、卫星和用户终端三部分。
地面站通过地面设备和天线发射信号到卫星,卫星通过天线接收地面信号并转发到另一地面站或用户终端。
二、卫星通讯技术1.卫星通讯的频段卫星通讯利用的频段主要包括C波段、Ku波段和Ka波段等。
C波段通讯距离远,穿透能力强,适用于卫星广播、远程通讯等;Ku波段通讯带宽大,传输速率快,适用于高速数据传输、互联网接入等;Ka波段通讯频率高,传输速率更快,适用于高清视频传输、卫星移动通信等。
2.卫星通讯的调制技术卫星通讯采用的调制技术主要包括AM、FM、PM等模拟调制技术,以及BPSK、QPSK、8PSK等数字调制技术。
调制技术可以提高信号的抗干扰能力、增加传输速率、提高频谱利用率等。
3.卫星通讯的编码技术卫星通讯采用的编码技术主要包括差分编码、卷积编码、交织编码、纠错编码等。
编码技术可以提高信号的可靠性,减小误码率,提高通讯质量。
4.卫星通讯的多址技术卫星通讯中的多址技术包括FDMA、TDMA、CDMA等。
FDMA将频段分成不同的信道,每个信道分配给不同的用户;TDMA将时间分成不同的时隙,不同用户在不同的时隙传输;CDMA利用不同码型区分用户,提高频谱利用率。
5.卫星通讯的跟踪技术卫星通讯中的跟踪技术包括天线跟踪、频率跟踪、星上时钟跟踪等。
跟踪技术可以确保地面站和卫星之间的通讯连续性,减小信号衰减和误差。
6.卫星通讯的天线技术卫星通讯中的天线技术主要包括馈源天线、反射天线、相控阵天线等。
卫星通信知识点总结一、卫星通信系统概述卫星通信是通过人造卫星作为中继器进行通信的一种通信方式,其优点是覆盖范围广,通信距离远,适用于远距离通信和偏远地区通信。
卫星通信系统由地面站、卫星和用户终端组成,地面站与用户终端间通过卫星进行数据传输。
二、卫星通信工作原理卫星通信系统工作原理主要包括地面站的发送和接收过程、卫星的中继传输过程、用户终端的接收和发送过程。
地面站发送的信号经过卫星中继后到达指定的用户终端,用户终端发送的信号也通过卫星中继后到达地面站。
三、卫星通信系统的分类卫星通信系统主要分为地球静止轨道通信卫星系统(GEO)、中低轨卫星通信系统(LEO/MEO)和其他非地球轨道卫星系统。
GEO卫星通信系统主要应用于广播电视、互联网接入等广泛覆盖通信需求,而LEO/MEO卫星通信系统主要应用于移动通信、数据传输等特定领域。
四、卫星通信系统的关键技术1. 卫星轨道技术卫星轨道技术是卫星通信系统设计的基础,根据通信需求选择合适的卫星轨道,包括地球静止轨道(GEO)、中低轨轨道(LEO/MEO)等。
2. 卫星天线技术卫星天线技术涉及卫星天线的设计、优化和部署,包括指向性天线、平面天线、阵列天线等不同类型,以满足不同的通信需求。
3. 卫星通信链接技术卫星通信链接技术主要包括上行链路、中继链路和下行链路,涉及调制解调、多址接入、信道编解码等关键技术。
4. 卫星通信网络技术卫星通信网络技术包括卫星网的设计、优化和管理,通过地面站和用户终端间的通信连接,在实现卫星覆盖范围内的各种通信需求。
5. 卫星通信安全技术卫星通信安全技术主要包括数据加密、用户认证、通信链路保护等技术,保障卫星通信系统的安全可靠运行。
五、卫星通信系统的应用卫星通信系统广泛应用于广播电视、军事通信、航空航天、海洋监测、移动通信、救援通信等领域,为人类的通信需求提供了便利。
总结:卫星通信系统是一种重要的通信方式,其应用范围广泛,技术含量高,对于地理位置偏僻,通信需求大的地区尤为重要。
卫星通讯知识点总结大全一、卫星通讯的概念卫星通信是指通过卫星作为中继器,实现不同地区之间的通信传输,包括声音、数据和图像等信息的交换。
卫星通信系统包括地面站、卫星和用户终端设备,通过这些设备完成信息的发送和接收。
二、卫星通讯的原理1. 发射和接收卫星通信系统的工作原理主要包括发射和接收两个过程。
发射端将要传输的信息通过天线发射到卫星上,卫星再将信号转发到接收端,接收端通过天线接收到信号。
2. 中继卫星是作为信息传输的中继器,接收到的信号再通过卫星转发到另一个地方的接收端,从而实现远距离的通信传输。
3. 多路复用卫星通信系统通过多路复用技术将多个信号合并成一个信号进行传输,接收端再通过解复用技术将信号还原为原来的多个信号。
三、卫星通讯的分类1. 通信卫星通信卫星是专门用于通信传输的卫星,根据轨道的不同可以分为地球同步轨道卫星和非地球同步轨道卫星。
2. 导航卫星导航卫星主要用于定位和导航,目前比较知名的导航卫星系统包括美国的GPS系统、俄罗斯的GLONASS系统和中国的北斗系统。
3. 气象卫星气象卫星用于气象观测和预报,通过卫星传输气象图像和数据,帮助人们了解天气变化并进行应对。
四、卫星通讯的优势1. 覆盖范围广卫星通信可以覆盖地面上很广泛的范围,尤其是在偏远地区或海洋中,常规通信方式难以覆盖的地区。
2. 传输距离远卫星通信可以实现远距离的通信传输,无需铺设大量的通信线路,节省了成本。
3. 抗干扰能力强卫星通信系统的天线设备对外部干扰的抗干扰能力较强,通信质量相对稳定。
4. 运营成本低一些卫星通信系统可以实现空间资源共享,降低了运营成本,对于那些需要低成本的应用场景比较适合。
五、卫星通讯的技术要点1. 大功率射频通信卫星通信系统中的射频通信是其核心技术,需要大功率的发射设备和高灵敏度的接收设备,以保证通信质量。
2. 天线设计卫星通讯系统中的天线设计对于信号的传输和接收至关重要,需要考虑到方向性、增益、波束宽度等参数。
卫星通信基础知识第一节电磁波常识电磁波振动的电场和磁场在空间的传播叫做电磁波。
由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。
二.电磁波的频率.波长人们用频率、波长和波速来描述电磁波的性质。
频率是指在单位吋间内电场强度矢量E (或磁场强度矢量H)进行完全振动的次数,通常用f表示。
波长是指在波的传播方向上相邻两个振动完全相同点Z间的距离,通常用X表示。
波速是指电磁波在单位吋间内传播的距离,通常用v表示。
频率f,波长入,和波速v之间满足如下关系:v=入如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz , 在国际单位制小,波速的单位是m/s (米/秒),波长的单位是 H1(米),频率的单位是Hz・对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。
例如:对于一个频率为98MHz的调频广播节其波长为 300, 000, 000 米除98, 000, OOOIIz,等于 3. 06 米。
不同的频率的(或不同波长)电磁波具有不同的性质用途。
人们按照其频率或波长的不同把电磁波分为不同的种类,频率在 300GHz (lGHz-10<J Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。
频率在3X10,1H Z-4X10I4H Z Z间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学丄的物理治疗或红外线加热,探测等,频率在3. 84X10u HZ-7. 69X10,4H Z之间的波为可见光,它能引起人们的视觉,频率在8X10,4H Z-3X10,7H Z之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在 3X1017 Hz-5X101<J HzZ间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理屮还有频率为10I8H Z-1022H Z以上的射线,其穿透能力就更强了。
卫星通信的基础知识卫星通信概述1.卫星通信的基本概念与特点定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。
卫星通信又是宇宙无线电通信形式之一,而宇宙通信是指以宇宙飞行体为对象的无线电通信,它有三种形式:(1)宇宙站与地球站之间的通信;(直接通信)(2)宇宙站之间的通信;(直接通信)(3)通过宇宙站转发或反射而进行的地球站间的通信。
(间接通信)第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。
大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。
静止卫星是指卫星的运行轨道在赤道平面内。
轨道离地面高度约为35800km (为简单起见,经常称36000km)。
静止卫星通信的特点(1)静止卫星通信的优点a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传输与距离无关)b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收)c 通信频带宽(带宽为500M),传输容量大d 信号传输质量高,通信线路稳定可靠e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信)f 可自发自收进行监测(2)静止卫星通信的缺点a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。
b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两极),而且地球的高纬度地区通信效果不好。
c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断现象。
——(现今可通过处理缩短这种现象)d 有较大的信号传输时延(发射和接受时间)和回波干扰。
2. 卫星通信系统的组成(1)卫星通信系统的组成通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。
(2)卫星通信线路的组成两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。
卫星通信基础知识第一节电磁波常识一、电磁波振动的电场和磁场在空间的传播叫做电磁波。
由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。
二、电磁波的频率、波长人们用频率、波长和波速来描述电磁波的性质。
频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。
波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。
波速是指电磁波在单位时间内传播的距离,通常用v表示。
频率f,波长λ,和波速v之间满足如下关系:v=λf如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz.对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。
例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。
不同的频率的(或不同波长)电磁波具有不同的性质用途。
人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。
频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。
三、波段与频道由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。
两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。
微波是指波长在微米级的无线电信号。
按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。
表1.1 无线电波波段的划分频道是指传送一个信号源节目所使用的频率(或波长)范围。
通常一个频段(或波段)能够再分成多个频道。
四、极化方式当电磁波在空间传播时,其电场强度矢量E的方向具有确定的规律,这种现象称为电磁波的极化。
在均匀无限空间中传播的电磁波是一种横波,其电场矢量E、磁场强度矢量H和波的传播方向三者之间,两两互相垂直,常用电场强度矢量E的变化来代表电磁波的变化。
极化方式即卫星电视信号的电磁场的振动方向的变化方式。
按照极化方式的不同,电磁波可分为线极化波和圆极化波等各种不同的类型。
所谓线极化波就是其电场强度矢量E 沿一定角度方向的波,当E与地面垂直时,称为垂直极化波;当E与地面平行时,称为水平极化波。
考虑到发射天线和接收天线的架设方便,减少重影,以及避开其他电波的干扰等因素,一般垂直极化波大多用于中波广播、移动通讯、卫星电视广播等,水平极化波大多用于短波广播、地面电视广播、调频广播和卫星电视广播等。
五、Ku波段卫星通信波段及其特点卫星通信使用微波频段300MHz—30GHz,采用高频信号的目的是保证地面上发射的电磁波能够穿透电离层到达卫星。
在卫星通信中,不同的卫星,或者同一颗卫星上的转发器所使用的频率范围不同,不同频率范围有不同的代号。
如3.95-5.85GHz频率范围的代号是C,该频率范围简称C波段;12.24-18GHz频率范围的代号是Ku, 该频率范围简称Ku波段。
项目卫星通信所用的电磁波在12.24-18GHz频率范围,属于微波范围的Ku波段,极化方式为垂直线极化。
六、同步通信卫星简介由于电视信号属于微波信号,早期的电视广播信号主要在地面传播,其传播方式为直线传播。
由于地球本身是一个球体,传播距离受地球弯曲弧度的影响,一般传播距离为40-60公里。
要使电视信号传播的更远,就需要加高天线或增加中继站。
天线高度的增加是有限的,中继站的增加会使信号衰减,成本加大。
要想减少中继站的数量,只能增加天线的高度,当我们把中继站搬到天上后,就变成了卫星。
卫星通信的目的是扩大信息的覆盖面,减少地面微波中继站,减少信息传播过程中的故障率,极大的提高信息的传输范围,提高信号的传送质量。
当卫星的轨道是圆形且在赤道平面上,卫星离地面35786.6公里,飞行方向与地球自转方向相同时,从地面上任意一点看,卫星都是静止不动,这种对地静止的卫星称为同步通信卫星。
利用三颗同步卫星,就能够使信号覆盖地球的表面。
用于电视节目转发的卫星一般都是同步通信卫星。
所以不同国家发射的通信卫星都在赤道的上空,同步通信卫星所处的纬度都为0℃,经度在0-360℃之间。
第二节卫星IP数据广播技术简介一、卫星数据广播技术概述卫星数据IP广播是通过UDP协议将数据打包送上卫星,再通过卫星下发至接收端。
接收端使用指定的PC卡/接收机和相应的接收软件即可接收。
IP广播是基于新一代的卫星数据广播方式,需要占用专门的IP频道资源。
在我国目前有取代VBI(电视逆程窄代数据广播)的趋势。
中国教育电视台的远程教育节目将由VBI 转移到IP数据广播方式。
卫星IP数据广播每个通道的数据传送速率可达1Mbps,甚至更高,可以在实时传输高清晰度的数字视频信号的同时传输远程教学所需的其他多媒体信息,完全能够满足远程教学对带宽的要求。
由于是基于广播方式传输,其带宽不受上网人数的制约,每个用户都能拥有同样的带宽。
IP数据广播不同于VBI,它将根据需要,把卫星上的转发器带宽分成许多份,每一份叫一个IP通道,能够用于传送一组类型的数据内容,可以是计算机网站信息,多媒体数据等。
IP数据广播目前在我国基本上是单向,即只能接收,也可以是双向,即学校或家庭利用地面卫星天线和双向设备在接收信号的同时能够向卫星发射数据信息。
二、卫星数字广播常用术语1. 上行频率:指发射站把信号发射到卫星上用的频率,由于信号是由地面向上发射,所以叫上行频率。
2. 转发器:指卫星上用于接收地面发射来的信号,并对该信号进行放大,再以另一个频率向地面进行发射的设备。
一颗卫星上可以有多个转发器。
3. 下行频率:指卫星向地面发射信号所使用的频率,不同的转发器所使用的下行频率不同,换句话,当我们接收不同的节目内容时,所使用的下行频不同,在使用卫星接收机时所设置的参数也就不同,如果设置不正确,将不能接收相应的节目内容。
例如:我国鑫诺一号卫星用于数据广播的下行频率之一为12,620MHz。
一颗卫星上有多个转发器,所以会有多个下行频率。
4. 符号率:卫星节目的符号率,指数据传输的速率,与信号的比特率及信道参数有关,单位为MB/S。
目前市场上普遍使用的“诺基亚”、“菲力蒲”、“现代”、“同洲”、“九洲”等卫星电视数字解压机的Symbol rate值在 6-30MB/S。
从世界上卫星发展趋势看,卫星电视的符码率越来越高,当一个载波信号携带的节目数越多时,此值越大。
5. MPEG-2: 是一种动态音、视频信号的压缩传输标准(Moving Pictures Experts Group),它分为音频、视频,传输标准等多种形式。
6. DVB:DVB(Digital video broadcasting)指数字视频广播,其主要目的是找一种对所有传输媒体都适用的数字电视技术与标准,其核心是以MPEG—2音、视频编码,有三种标准:DVB-S 数据广播-卫星方式DVB-C 数据广播-闭路方式DVB-T 数据广播-地面微波中继方式7. 纠错方式:FEC EP前向纠错码方式,不同的系统会有不同的设置,接收机的FEC方式的设置必须与上行站编码方式一致才能正确解码,目前亚洲2号卫星的FEC值为3/4。
8. 本振频率:对C波段卫星接收机的LNB本振频率一般为5150MHz,而Ku频段高频头的本振频率各不相同,常用的高频头的本振频率为11250或11300,一般具体是多少,请仔细查看高频头包装盒上的说明。
9. DiSEqC:英文为Digital Satellite Equipment Control,直译为:“数字卫星设备控制”,有1.0、1.1、1.2、2.0等不同版本的标准,是用数字卫星电视接收机控制,发出指令集(控制指令)给相应设备,如切换开关、切换器、天线驱动设备、LNB等。
工作过程是数字卫星电视接收机内部在同步时钟脉冲配合下,通过与LNB高频头相连的同轴电缆线,经调制于22KHz频率上交替变化的数字信号串行转送相关控制指令,DiSEqC1.0常用于控制多入一出的中频切换器的控制;DiSEqC1.1是1.0的扩充版本;DiSEqC1.2则加入驱动并控制推动杆或极轴座的功能;DiSEqC2.0就具有双向控制的功能,外设就会有信息传回数字卫星电视接收机。
简单的理解,可认为DiSEqC是数字卫星接收机中的一个设置参数,它能够使一个卫星接收机接收多个不同卫星天线的信号。
在只有一个卫星接收天线时,该值设置为关(OFF)状态。
10. PID码:PID码是英文Packet Identifier简称,是包识别码的意思。
电视信号上传至卫星首先要对音视频及数据信号进行编码,用MPEG-2标准压缩成PES包,再将PES包转换成长度为188字节的传送IP包,它代表每帧画面的信息量。
在188字节中,用3B来表示包开始前缀,以1B来表示包标识,2B表示PES包的包长度剩下的是实时压缩的活动图像声音等可变PES包,PID在传送包的包头上。
如果不知道PID值,就不能正确接收相应的节目。
具体来讲,PID可分视频、音频两大类,其中视频类又分图像、图文类,音频类则分电视与广播类。
简单理解,PID就是为卫星上传送的节目加一个编号,数字卫星接收机或PC接收卡要根据这个编号来判断所接收的信号属于那一个节目。
PID就是收信人的地址和姓名。
在卫星数据广播中,每一个节目都有自己的PID。
项目扶贫通道的PID=b2。
总之,PID值是为了区分各种数据包的用途,DVB和MPEG-2标准中规定在数据包中所加的标识符。
要想接收所需IP数据频道,必须添加相应的PID值。
附录4给出了中国教育卫星宽带传输网各频道编号和PID值,以及相应的远程教育节目名称。
第三节中国教育卫星宽带多媒体传输网简介一、鑫诺一号卫星“ 鑫诺一号”通信卫星于1998年7月18日发射成功,它是一颗服务于中国及亚太地区的广播通信卫星、同时也是一颗专门为电视直播业务和卫星专用通信网业务设计的通信广播卫星。