金属锂提取冶金学:汇总
- 格式:docx
- 大小:57.70 KB
- 文档页数:10
锂电池湿法冶金全文共四篇示例,供读者参考第一篇示例:锂电池湿法冶金是一种用湿法技术从矿石中提取锂金属的工艺。
随着电动汽车和移动电子设备的普及,锂电池的需求不断增长,因此锂资源的开采和提取也变得越来越重要。
目前主要的锂资源大多来自于稀有金属矿石,如锂辉石矿石。
锂电池湿法冶金的工艺流程包括矿石的破碎、浸出、富集和沉淀等步骤。
将矿石经过破碎和磨矿处理,得到细粉末状的矿石。
然后将矿石放入浸出槽中,用浸出剂(通常是盐酸或硫酸)进行浸出,将锂金属从矿石中溶解出来。
接着,通过加入沉淀剂或调节溶液的pH值,将锂金属从溶液中沉淀出来,进一步提纯得到纯度较高的锂金属。
锂电池湿法冶金的优点在于工艺简单、成本较低,可以实现大规模生产。
湿法冶金还能回收利用矿石中的其他有价值的金属元素,实现资源的综合利用。
湿法冶金也存在一些问题,如对环境的污染以及消耗大量的水资源等。
为了减少对环境的影响,提高冶金过程的效率和资源利用率,科研人员正在不断努力改进湿法冶金技术。
采用生态友好的浸出剂和沉淀剂、优化工艺条件,减少能耗和废水排放等。
还可以通过改进提取设备和自动化控制系统,提高生产效率和产品纯度。
锂电池湿法冶金是一种重要的锂提取技术,为锂资源的开发和利用提供了可行的解决方案。
随着技术的不断进步和创新,相信锂电池湿法冶金将会更加环保、高效,为锂电池产业的发展做出更大的贡献。
第二篇示例:湿法冶金的核心是溶解和析出反应。
将锂矿石在酸性或碱性条件下进行浸出,将其中的锂盐溶解到溶液中。
然后通过控制溶液的pH值、温度等条件,使得锂盐析出出来,形成纯净的锂金属。
整个过程中无需高温高压,不会产生大量的二氧化碳等废气,避免了对环境的污染。
在锂电池湿法冶金中,有几种常用的提取方法。
最常见的是碳酸锂法和氯化法。
碳酸锂法是通过将锂矿石和碳酸混合反应,再经过过滤、蒸发等步骤提取锂金属。
而氯化法是将锂矿石与氯化剂反应生成氯化锂,并通过析出等方法提取锂金属。
这两种方法各有优劣,可以根据具体的情况选择适合的方法。
_*锂生产工艺性质锂在元素周期表中属ⅠA族,其相对原子质量为6.941,天然同位素质量数为6、7,密度0.531g/cm3(20℃),熔点179~186℃,沸点1372℃,因此还原法生产工艺中易出现液状,真空条件下便于杂质元素分离,有利于产品纯度的提高;金属锂呈银白色,它与湿空气相遇,能与其中的O2、N2迅速化合,表面生成Li2O、LiOH及Li3N的覆盖层,覆盖层呈淡黄色以至黑色,所以必须在石蜡或汽油中保存。
锂的化学活性很强,能与HCl、HNO3、稀H2SO4起剧烈的反应,特别是在浓HNO3中强烈氧化,以至熔融和燃烧。
在浓H2SO4中溶解缓慢。
锂在高温下与碳作用生成LiC;与F、Cl、Br、I作用并发生燃烧,与水反应生成LiOH;在加热至熔点温度下能与S 反应生成LiS,与Si一起熔融生成Li6Si2。
此外,锂与有机化合物几卤素衍生物反应,生成相应的锂有机化合物。
碳酸锂常压下熔点730℃,分解温度1270℃,先熔融成桨状,再分解脱除CO2,阻碍分解反应的进行,但当有石灰或铝氧土参与时,可使物料变成疏松状,有利于CO2分解,如碳酸锂与石灰按2/3进行配料,在真空中进行焙烧,800℃下可完成作业。
用途由于锂的优异性能日益被人们发现和利用,目前已在国民经济各部门以及近代尖端技术——原子能、热核反应、洲际火箭、人造卫星等方面都起着非常重要的作用。
金属锂极其化合物可作为优质高能燃料,已经用于宇宙火箭、人造卫星、超声速飞机和潜水艇等燃料系统方面。
在冶金工业上,锂作为轻合金、超轻合金、耐磨合金极其它合金的组分。
锂与镁、铝、铍组成的合金,质地轻,加工性能好,强度大,已被用作飞机的结构材料。
铝电解质中加入锂盐,可降低电耗。
在玻璃工业中,将锂化合物作为加成剂,可提高玻璃的强度和韧性,降低熔点,增加电阻和延迟透明消失的作用。
玻璃中含锂较多时,能提高紫外线透射率,降低热膨胀系数,目前锂玻璃已用于制造大型电视显象管等。
锂钠钾金属提取
锂钠钾是化学元素周期表第1A族元素中的金属元素。
这三种金属都具有极强的化学活性,因此它们在自然界中往往以化合物的形式存在。
然而,由于锂、钠、钾在工业和生活中的广泛应用,对它们的提取和加工成为了一个重要的课题。
锂的提取主要有两种方法:碳酸锂法和氯化锂法。
碳酸锂法是将锂矿石经过破碎、浮选等物理化学处理后得到含锂的碳酸锂。
然后,利用高温还原或碱性碳酸锂与二氧化碳反应产生碳酸氢锂等方法进行进一步的提取和纯化。
而氯化锂法则是利用铁锂矿或锂硅矿经过氯化反应,反应生成氯化锂和其他副产品,然后通过溶液萃取、逆萃取、晶体分离等过程得到纯化的氯化锂。
钠的主要提取方法是氯化法和电解法。
氯化法是通过与钾矿石一起加热,生成氯化物混合物,然后通过溶液萃取和化学纯化得到纯钠氯化物。
最后,通过加热还原,得到纯钠金属。
而电解法则利用电解池中的氯化钠溶液,通过电流的作用,使钠离子在电解池阳极处还原成钠金属,成为一种直接获得纯净钠的方法。
钾的提取主要采用电解法。
钾电解的重要原料是氯化钾和氢氧化钾,这两者是通过钾矿石的浸出、结晶、脱水等工艺得到的。
在电解
池中,通过直流电流的作用,使氯化钾和氢氧化钾中的钾离子在电解
池的阳极处还原成金属钾,而阴极则放出氢气。
以上是锂、钠、钾金属的主要提取方法。
在实际应用中,还需要
进行脱氧、纯化和加工等工艺步骤,以得到满足不同领域需求的金属
产品。
同时,锂、钠、钾的连续开发和利用也需要更多的科研人员参与,以提高金属提取和加工的效率和环保性,推动这些金属在新能源、冶金、化工等领域的应用。
锂生产工艺性质锂在元素周期表中属ⅠA族,其相对原子质量为6。
941,天然同位素质量数为6、7,密度0.531g/cm3(20℃),熔点179~186℃,沸点1372℃,因此还原法生产工艺中易出现液状,真空条件下便于杂质元素分离,有利于产品纯度的提高;金属锂呈银白色,它与湿空气相遇,能与其中的O2、N2迅速化合,表面生成Li2O、LiOH及Li3N的覆盖层,覆盖层呈淡黄色以至黑色,所以必须在石蜡或汽油中保存。
锂的化学活性很强,能与HCl、HNO3、稀H2SO4起剧烈的反应,特别是在浓HNO3中强烈氧化,以至熔融和燃烧。
在浓H2SO4中溶解缓慢.锂在高温下与碳作用生成LiC;与F、Cl、Br、I作用并发生燃烧,与水反应生成LiOH;在加热至熔点温度下能与S 反应生成LiS,与Si一起熔融生成Li6Si2.此外,锂与有机化合物几卤素衍生物反应,生成相应的锂有机化合物.碳酸锂常压下熔点730℃,分解温度1270℃,先熔融成桨状,再分解脱除CO2,阻碍分解反应的进行,但当有石灰或铝氧土参与时,可使物料变成疏松状,有利于CO2分解,如碳酸锂与石灰按2/3进行配料,在真空中进行焙烧,800℃下可完成作业。
用途由于锂的优异性能日益被人们发现和利用,目前已在国民经济各部门以及近代尖端技术-—原子能、热核反应、洲际火箭、人造卫星等方面都起着非常重要的作用。
金属锂极其化合物可作为优质高能燃料,已经用于宇宙火箭、人造卫星、超声速飞机和潜水艇等燃料系统方面.在冶金工业上,锂作为轻合金、超轻合金、耐磨合金极其它合金的组分。
锂与镁、铝、铍组成的合金,质地轻,加工性能好,强度大,已被用作飞机的结构材料。
铝电解质中加入锂盐,可降低电耗。
在玻璃工业中,将锂化合物作为加成剂,可提高玻璃的强度和韧性,降低熔点,增加电阻和延迟透明消失的作用。
玻璃中含锂较多时,能提高紫外线透射率,降低热膨胀系数,目前锂玻璃已用于制造大型电视显象管等.在化学工业上,锂由于有机合成和人造橡胶方面,作为接触剂和稳定剂,也可作为石油裂化过程的热载体。
高中化学金属锂的冶炼
金属锂的冶炼主要有以下几个步骤:
1. 矿石选矿:首先从锂矿石中提取含锂的矿物。
常见的锂矿石主要有云母矿石、钨锂辉石矿石、蓝闪锂辉石矿石等。
2. 矿石破碎和磨矿:将锂矿石破碎成适当的颗粒大小,然后通过磨矿的方式使其细化。
3. 矿石浸出:将细磨后的锂矿石与化学试剂(如硫酸、氟化钙等)进行反应浸出,使得锂溶解在浸出液中。
4. 锂沉淀:将浸出液与碳酸锂等化学试剂反应,使得锂以碳酸锂的形式沉淀出来。
5. 锂碳酸盐的烧结:将锂碳酸盐进行烧结,使得其中的杂质和水分等被蒸发掉,得到纯净的锂碳酸盐。
6. 电解精炼:将锂碳酸盐加热到一定温度后,经过电解精炼,将其中的杂质进一步去除,得到纯度更高的锂金属。
以上步骤是一种常见的金属锂冶炼流程,实际的冶炼过程可能会有所差异,具体步骤会根据不同的矿石种类和提取方法有所不同。
废旧锂离子电池中有价金属的分离与提取技术研究废旧锂离子电池中有价金属的分离与提取技术研究随着科技的进步和社会的发展,锂离子电池已成为人们生活中不可或缺的能源存储设备。
然而,随着大量锂离子电池的使用和报废,废旧锂离子电池的处理问题也日益凸显。
废旧锂离子电池不仅占据大量的储存空间,还存在着对环境造成污染的风险。
此外,废旧锂离子电池中含有丰富的有价金属,如锂(Li)、钴(Co)、镍(Ni)等,若能有效地分离和提取这些有价金属,不仅可以节约宝贵资源,还可以为资源回收产业提供重要的原材料。
目前,针对废旧锂离子电池中有价金属的分离与提取问题,学术界和工业界已经开展了大量的研究工作。
其中,一种常用的分离与提取技术是湿法冶金法。
该方法通过溶解废旧锂离子电池中的金属物质,并在适当的条件下进行还原、结晶等处理,从而实现金属的分离与提取。
例如,可以使用酸浸法将废旧锂离子电池中的锂、钴和镍溶解,然后通过添加还原剂进行还原,最后通过结晶和过滤等步骤分离得到纯净的金属。
另外,还有一种常见的分离与提取技术是高温熔盐电解法。
该方法利用高温熔盐的导电性和金属的电化学性质,通过电解的方式将废旧锂离子电池中的有价金属分离提取出来。
熔盐电解法具有高效、快速、无污染等优点,被广泛应用于废旧锂离子电池中有价金属的回收利用。
然而,由于高温熔盐电解法需要较高的温度和特殊材料,也存在一定的技术和设备限制。
因此,在实际应用中需要综合考虑各种因素,选择合适的分离与提取技术。
除了湿法冶金法和高温熔盐电解法外,还有一些其他的分离与提取技术正在不断研究和探索中。
例如,超临界流体技术、微生物还原技术等,这些新兴技术在废旧锂离子电池的有价金属分离与提取领域展示了广阔的应用前景。
在实际应用中,不同的技术选择需要综合考虑多种因素。
例如,包括成本、效率、环境影响等。
应根据不同的废旧锂离子电池组成、规模和特点,选择合适的分离与提取技术。
同时,配套的设备和工艺也是实现分离与提取的关键。
锂金属提炼锂金属是一种重要的金属元素,广泛应用于电池、合金等领域。
本文将介绍关于锂金属提炼的相关知识。
一、锂金属的性质和用途锂金属是一种轻质金属,具有低密度、高熔点、良好的导电性和热导性等特点。
由于锂金属的电化学性质稳定,因此在电池领域有着广泛应用。
锂金属电池具有高能量密度、长寿命和快速充放电等优点,被广泛应用于移动电子设备、电动汽车等领域。
1. 初级提炼锂金属初级提炼主要是从矿石中提取锂化合物。
常见的锂矿石有钾长石、云母矿、斑岩等。
首先,通过矿石的选矿、磨矿和浸出等步骤,将锂化合物提取出来。
然后,通过化学反应和电化学方法,将锂化合物转化为锂金属。
2. 电解法电解法是目前主要的锂金属提炼方法之一。
首先,将锂化合物溶解在溶剂中,形成电解液。
然后,将电解液注入电解槽中,通过外加电流的作用,将锂离子还原成锂金属。
锂金属会在电解槽的阴极上析出,而阳极上则产生气体。
最后,将析出的锂金属进行收集和精炼,得到纯净的锂金属。
3. 熔盐电解法熔盐电解法是另一种常用的锂金属提炼方法。
它利用高温熔盐作为电解质,在高温下进行电解。
首先,将锂化合物和其他金属盐混合,并加热至高温使其熔化。
然后,通过电解槽中的电流,将锂离子还原成锂金属。
最后,将析出的锂金属从熔盐中分离出来,并进行精炼。
三、锂金属提炼的挑战和发展趋势锂金属提炼过程中存在一些挑战。
首先,锂金属的氧化性很强,容易与空气中的氧气反应生成氧化锂,导致能量损失。
其次,锂金属在水中会迅速与水反应生成氢气,具有较高的危险性。
此外,锂金属的提炼过程需要高温、高能耗,对环境造成一定的影响。
为了解决这些问题,锂金属提炼技术在不断发展。
目前,研究人员正在探索新的电解质、电解槽材料和电解工艺,以提高锂金属的提炼效率和纯度。
此外,一些新型的提炼方法也正在研究中,如固态电解法、气体相法等,这些方法有望降低能耗、提高产出和减少环境污染。
四、锂金属的应用前景随着电动汽车、可再生能源等领域的快速发展,对锂金属的需求也在不断增加。
金属锂可行性研究报告总结
一、金属锂的生产现状及发展趋势
金属锂的生产主要依赖于矿石提取及化学还原方法。
目前主要的金属锂生产国家包括澳大利亚、阿根廷、智利等,在全球市场上具有一定竞争力。
随着新能源产业的快速发展,对金属锂的需求也在不断增加,未来金属锂的市场前景广阔。
二、金属锂的应用领域
金属锂主要应用于电池、合金、核聚变等领域,其中以电池市场需求最为旺盛。
随着电动汽车、储能设备等领域的快速发展,金属锂的应用前景广阔,市场需求大幅增加。
三、金属锂的可行性分析
1. 技术可行性:金属锂的提取、生产技术已经非常成熟,生产成本逐渐降低,技术可行性较高。
2. 经济可行性:金属锂的市场需求持续增长,价格稳定,生产利润可观,具有较高的经济可行性。
3. 环境可行性:金属锂生产过程中产生的废弃物可进行循环利用,对环境影响较小,具有一定环境可行性。
4. 市场可行性:金属锂的市场需求广泛,未来市场前景广阔,具有较高的市场可行性。
综上所述,金属锂作为一种重要的金属元素,在未来具有较高的可行性和发展潜力,值得投资和关注。
希望本报告对金属锂的研究和发展有所帮助。
金属锂生产工艺金属锂生产工艺是指从锂矿石中提取、精炼、冶炼金属锂的过程。
下面将详细介绍金属锂生产工艺的流程和步骤。
首先,金属锂生产工艺的第一步是选矿。
矿石中的锂主要以融合态的矿物锂辉石和融合链属锂石为主,有些矿石中还含有少量的软钻石、碳酸锂、锂锂辉石等。
在选矿过程中,需要对矿石进行物理和化学性质的分析,然后选择合适的选矿方法进行选别。
第二步是浸出提锂。
在这一步骤中,选矿后的矿石经过压力酸浸出,使锂转化为锂盐溶解于溶液中。
常用的浸出剂有硫酸和氢氟酸,经过一段时间的浸出过程后,将得到含有锂盐的浸出液。
第三步是溶液净化。
浸出液中可能含有着氟化物、磷酸盐、铝、铁等杂质,需要进行净化处理。
常用的净化方法有沉淀法、溶出法和溶剂提取法等。
通过这些方法可以去除浸出液中的杂质,从而得到较纯净的锂盐溶液。
第四步是锂盐溶液电积。
将净化后的锂盐溶液加入电积槽中,通过电解的方式进行电积。
需要注意的是,在电积过程中需要控制好温度、电流密度和电积时间等参数,以确保得到高纯度的金属锂。
第五步是金属锂冶炼。
锂电设备通过电解获得的锂锭可以作为电池材料使用,但通常在冶炼过程中还需要对锂锭进行进一步的提纯。
冶炼中常用的方法有真空冶炼法、熔盐电解法等。
最后一步是金属锂的精炼。
在金属锂生产过程中,锂锭往往含有一定的杂质,需要进行精炼处理。
常用的精炼方法有真空冶炼、精锻法、气相碘化法等。
总结起来,金属锂生产工艺的主要步骤包括选矿、浸出提锂、溶液净化、锂盐溶液电积、金属锂冶炼和金属锂的精炼等。
这些步骤能够将锂矿石中的锂分离出来并提纯,最终得到高纯度的金属锂。
金属锂提炼技术及应用前景金属锂是一种重要的化工原料和电池材料,具有很高的能量密度和较低的重量,被广泛应用于锂离子电池、航空航天等领域。
金属锂的提炼技术包括电解法、蒸馏法、动力学方法等。
其中,电解法是目前最常用的方法。
金属锂的电解提炼是利用金属锂在电解液中的电化学行为,通过电解反应将锂从其化合物中提取出来。
常见的电解质体系包括氯化锂/氯化钾、氯化锂/氯化锂和硫酸锂/聚合物电解质等。
其中,氯化锂/氯化钾体系是目前最常用的电解质体系,具有较高的电解效率和较好的电化学性能。
电解法提炼金属锂的过程中,首先需要将锂资源经过粉碎、预处理等工艺步骤,以提高提炼效率。
然后将预处理后的锂资源投入电解槽中,并设置阳极和阴极,通过外加电流和电压的作用,使得锂在电解液中析出。
最后,将析出的锂回收,经过洗涤、干燥等处理,得到金属锂产品。
金属锂的提炼技术在锂离子电池领域具有广泛应用。
锂离子电池是目前最主要的储能电池,广泛应用于电动车、手机、笔记本电脑等电子产品中。
金属锂是锂离子电池的主要正极材料,具有高能量密度、长寿命、较低的自放电率等优点,能够满足现代电子产品对电源的要求。
金属锂的应用前景非常广阔。
随着电动汽车、可再生能源等领域的快速发展,对高能量密度、高功率输出、长寿命的电池材料需求不断增加。
金属锂作为锂离子电池的重要组成部分,将会持续受到关注和需求。
此外,金属锂还可以应用于航空航天、军事装备等领域,满足对高性能储能材料的需求。
然而,金属锂提炼技术也存在一些挑战和问题。
首先,金属锂的提炼过程需要高温、高压条件,存在安全风险。
其次,电化学过程中可能会产生气体等副产品,对环境造成污染。
此外,金属锂的提炼成本较高,限制了其大规模应用。
为了解决上述问题,需要进一步改进金属锂的提炼技术。
例如,优化电解体系和电解条件,提高电解效率和电化学性能。
同时,研发新型电解液和电极材料,以降低金属锂的提炼成本。
此外,加强对金属锂的回收和再利用,减少对资源的浪费。
化学元素知识:锂-用途广泛的轻金属元素锂(化学符号Li)是一种用途广泛的轻金属元素,属于第一组元素。
它是一种银白色的金属,具有较低的密度和熔点。
锂在自然界中以稀有矿产的形式存在,包括锂辉石和锂云母。
锂的化学性质非常活泼,在空气中容易被氧化,因此通常以化合物的形式存在,如氢氧化锂和硫酸锂。
锂具有广泛的用途,涵盖了各个领域的科学、工业和生活。
下面将详细介绍锂在能源、医药、冶金和其他方面的用途。
一、锂在能源领域的用途1.锂离子电池锂离子电池是锂应用最为广泛的领域之一,它是一种轻便高效的化学储能装置。
由于锂具有较低的密度和较高的电位,使得锂离子电池在移动设备、电动汽车和储能系统等方面得到了广泛应用。
锂离子电池在减轻汽车重量、提高车辆续航里程和降低碳排放等方面发挥了重要作用。
2.锂-硫电池锂-硫电池是一种新型的高能量密度电池,可以在电动汽车、无人机等领域中提供高容量的储能解决方案。
锂-硫电池具有较高的比能量和较低的成本,因此具有巨大的应用潜力。
3.锂空气电池锂空气电池是一种基于锂和氧反应产生电能的电池类型,具有潜在的高能量密度和低成本特点。
锂空气电池可以应用于电动汽车、移动设备和局域网能源储备等领域。
二、锂在医药领域的用途1.锂盐的药用价值碳酸锂和氯化锂是常见的锂盐化合物,它们在医学领域中被用作治疗双相情感障碍和躁郁病的药物。
锂盐能够稳定患者的情绪状态,减轻精神症状,目前已成为精神科医生治疗情感障碍的常用药物。
2.锂在神经学研究中的应用由于锂对神经细胞的影响,它在神经学研究领域中被广泛应用。
锂能够促进神经干细胞的增殖和神经元的生长,因此在神经再生医学和神经退行性疾病治疗中具有潜在的应用价值。
三、锂在冶金领域的用途1.锂的金属提取锂可通过硫酸法、氯化法和熔融法等多种方法从矿石中提取。
锂的提取技术在冶金工业中发挥重要作用,用于生产锂金属和锂化合物,满足锂离子电池、核能和冶金等领域的需求。
2.锂在合金中的应用锂在合金中可以提高强度和耐蚀性,因此在航空航天、汽车制造和其他领域中被广泛应用。
锂的提炼工艺技术书籍锂是一种常见的金属元素,它具有广泛的应用领域,如新能源电池、手机等电子产品以及航空航天、冶金等工业领域。
锂的提炼工艺技术是将锂从其天然矿石中分离出来的过程,它是锂产业链的重要环节,对于锂的生产和利用具有重要意义。
锂的提炼工艺技术包括锂矿石的选矿、矿石的预处理、矿石的矿化法提锂和电解法提锂等步骤。
首先,锂矿石的选矿是将矿石中的杂质和有用矿物分离,以提高锂的含量和纯度。
常见的锂矿石有石榴石矿石、斑岩矿石和硼锂石矿石等。
在选矿过程中,采用物理方法如重选、磁选和浮选等,根据矿石的密度、磁性和湿性等差异进行分离。
其次,矿石的预处理是将矿石粉碎、研磨和浸出等过程。
矿石经过破碎、磨粉和浸出等步骤,从而获得锂的含量较高的矿石浆料。
然后,矿石的矿化法提锂是将矿石中的锂转化为可溶性盐类,并通过晶体化和沉淀的方式将锂盐分离出来。
常用的矿化法有皮尔逊法、硫酸法和氢氧化锂法等。
其中,硫酸法是最常用的方法,它通过加热和反应,将矿石中的锂转化为硫酸锂并进行过滤和焙烧等步骤分离出锂盐。
最后,电解法提锂是将锂盐溶液通过电解的方式提取纯锂金属。
电解法主要是利用锂盐溶液的电导性差异,将锂离子从阳极转移到阴极,从而使锂金属在阴极上沉积,最终提取纯锂金属。
锂的提炼工艺技术涉及到多个领域的知识,如选矿学、冶金学、化学工程等。
优化提炼工艺技术可以提高锂的产量和纯度,降低生产成本和环境污染。
随着锂的广泛应用,锂的提炼工艺技术也在不断创新和发展。
例如,现代锂提炼工艺技术越来越注重提高工艺流程的自动化和智能化水平,通过应用先进的控制系统和设备,提高生产效率和产品质量,减少人为操作错误和事故的发生。
总之,锂的提炼工艺技术是锂产业的重要环节,对于提高锂的产量和纯度具有重要作用。
随着锂需求的增加和技术的不断进步,锂的提炼工艺技术将会不断完善和创新,为锂产业的发展提供更好的支撑。
金属锂精炼综述摘要:随着锂电池的广泛应用,对高纯度金属铮的需求量越来越大。
本文主要介绍了金属锂精炼方法,主要有真空蒸馏法、吸气法、过滤法、高真空精炼法、氢化法和区域熔炼法。
关键词:锂、过滤、真空蒸馏1.锂的性质1.1.锂的物理性质锂是1817年由A.Arfvedson 发现的,是碱金属元素中最轻的,原子序数是3,原子量为6.941,在元素周期表中位于IA族,锂的原子核是由三个质子和四个中子组成的,核外三个电子,其中K层两个,L层一个。
通常空气干燥的情况下 Li 呈银白色,密度约为 0.5g/cm3,延展性比较好。
Li 是原子半径最小的碱金属,晶格最坚固,熔、沸点最高,可在达到1156℃的高温下仍然保持液态。
常压下锂不易挥发,汞中溶解性好。
几乎可以和除铁以外的所有金属相熔。
空气潮湿时,Li 会迅速失去光泽,并发生物质转变,表面生成 LiOH、 LiO和Li2CO3的混合物覆盖层,因此Li 要密封干燥保存,比如可用石蜡或凡士林。
1.2.锂的化学性质锂的活泼性较强,其化学性质主要取决于最外层容易丢失一个价电子,与其他元素化合时形成离子键。
在加热时,Li 与卤族气体、熔融的S、C、Si 等剧烈反应,多生成离子晶格型化合物,且生成的化合物由于其离子晶格的特质使产物易溶于水。
粉末状的Li 与H2O 易发生爆炸反应。
室温下,纯锂在干燥空气中不易氧化,但在较高温度(100℃或以上)时,它和O2反应,产物是Li2O。
硫等和氧在同一主族的单质,在较高的温度下能和锂反应生成相应的化合物。
在高温下,1/2Li+ 1/2C=Li2C2。
在接近锂的熔点时,Li+1/2H2=LiH 这个反应很容易发生,说明 Li 的氢化物相较于其他碱金属氢化物更稳定[1]。
锂和 HCl、稀H2SO4、 HNO3反应激烈,但与浓 H2SO4反应缓慢。
与烷烃、苯、汽油、乙醚、惰性气体不发生反应。
大多数的有机化合物及卤素衍生物都可以和锂发生反应(烷烃、苯、乙醚、汽油以及惰性气体除外),生成相应的含锂有机物。
锂生产工艺性质锂在元素周期表中属I A族,其相对原子质量为 6.941,天然同位素质量数为 6、7密度0.531g/cm3 (20C),熔点179~186 C,沸点1372C,因此还原法生产工艺中易出现液状,真空条件下便于杂质元素分离,有利于产品纯度的提高;金属锂呈银白色,它与湿空气相遇,能与其中的Q、N2迅速化合,表面生成 Li 2。
LiOH及Li 3N的覆盖层,覆盖层呈淡黄色以至黑色,所以必须在石蜡或汽油中保存。
锂的化学活性很强,能与HCI、HNO、稀HSQ起剧烈的反应,特别是在浓 HNO中强烈氧化,以至熔融和燃烧。
在浓fSQ中溶解缓慢。
锂在高温下与碳作用生成 LiC ;与F、Cl、Br、丨作用并发生燃烧,与水反应生成 LiOH;在加热至熔点温度下能与 S反应生成LiS,与Si 一起熔融生成Li e Si z。
此外,锂与有机化合物几卤素衍生物反应,生成相应的锂有机化合物。
碳酸锂常压下熔点 730 C,分解温度1270 C,先熔融成桨状,再分解脱除 CO2,阻碍分解反应的进行,但当有石灰或铝氧土参与时,可使物料变成疏松状,有利于CO2 分解,如碳酸锂与石灰按2/3进行配料,在真空中进行焙烧, 800C下可完成作业。
用途由于锂的优异性能日益被人们发现和利用,目前已在国民经济各部门以及近代尖端技术——原子能、热核反应、洲际火箭、人造卫星等方面都起着非常重要的作用。
金属锂极其化合物可作为优质高能燃料,已经用于宇宙火箭、人造卫星、超声速飞机和潜水艇等燃料系统方面。
在冶金工业上,锂作为轻合金、超轻合金、耐磨合金极其它合金的组分。
锂与镁、铝、铍组成的合金,质地轻,加工性能好,强度大,已被用作飞机的结构材料。
铝电解质中加入锂盐,可降低电耗。
在玻璃工业中,将锂化合物作为加成剂,可提高玻璃的强度和韧性,降低熔点,增加电阻和延迟透明消失的作用。
玻璃中含锂较多时,能提高紫外线透射率,降低热膨胀系数,目前锂玻璃已用于制造大型电视显象管等。
在化学工业上,锂由于有机合成和人造橡胶方面,作为接触剂和稳定剂,也可作为石油裂化过程的热载体。
氯化锂适于作铝的焊接熔剂,并用在蓄电池中。
锂蓄电池的阳极,阴极是锂碲合金 (lithium-tellurium alloy )电解质是800T (427C)熔池中的锂盐。
富特矿产公司(Foote Mineral Co.)的锂带(lithium ribbon )用于高能电池,为纯度99.96 %的连续金属带材,厚度为0.02in(0.05cm), 在氩气中成卷干包装。
粉末状的无水六氟砷化锂 (lithium hexafluoroaresnate) 用作干电池的阳极。
锂电池用锂锂是理想的电池材料,这主要是基于:锂原子具有最小的电化学当量,1g 锂可以放出3.83A.H的电;具有最低的电负性,起标准电极电位为— 3.045V;锂电阻低,有利于电极集流;锂的比重轻,有利于获得较高的比能量;锂的活性大,活性物质的利用率高;总之,锂电池重量轻、体积小、贮电能力大、充电速度快、适用范围广。
锂的冶金简史锂是1817年瑞典化学家阿弗维得松( A?Arfvedson )在斯德哥尔摩 Berzelius实验室研究透长石时发现的,命名为 Lithium(锂),源于希腊词Lithos,意为石头。
A?Arfvedson当时曾试图提取这种金属元素,但没有成功。
1818年,英国人戴维(H.Davy )在成功地制取了 K、Ca、Mg后,首先电解碳酸锂制得少量金属锂。
之后,1855年,德国人本生(J?Bansen)电解熔融氯化锂制取了较多的金属锂,并开始研究金属锂的性质。
1893年,岗次(Guntz )提出电解含有等量氯化锂和氯化钾熔体制取金属锂,可在450 C左右下进行电解,使电解温度大幅度降低,使电解效率明显提高,奠定了现代电解法生产金属锂的基础。
从1817年发现元素锂到有一定金属锂的生产规模,历史76年。
自1893年研究成功融盐电解法制取金属锂,至今已有111年时间,融盐电解法提取金属锂已成为一种传统的提取工艺。
热还原法提锂的研究简史金属锂的生产(方法)1、熔盐电解法:氯化钾为支持电解质,电解温度450~500C,氯化锂 45~60%初晶温度360~450C 之间;2、热还原法:a)、碳热还原法 Li 2O+C=2Li+CO, 1937年美国矿物局提出,反应温度1680C,,但反应产物易被CO污染,发生二次反应,难于实施;b)、氢还原法Li 2O+H=2Li+H2O,试验发现易产生中间化合物,可能是LiH ;c)、硅还原法方法 1: 2Li 2O+2CaO+Si=4Li+SiO2 ?2CaQ 采用 79#硅铁,硅过量 10% 采用 40 份 Li 2CO 使其在真空中分解,然后与60份CaO混合,在1300C 1.3 x 10-6大气的真空下,锂的回收率可达92.7%;方法2 :碳酸锂:石灰=2 : 3 (质量比)配料,焙烧,加过量10〜15%的75#硅铁,制球,1000C及残压43〜1.3Pa的真空条件进行还原,每次装料2.5kg,产锂175g,回收率80%, 锂的纯度99%。
焙烧作业:CaOU2CO3 ------ ► CO2+Li 2O还原反应的主体反应为:2Li2O + Si=4Li+SiO 2当75#硅铁过量10〜15%、锂回收率80%时,全工艺过程:投入:40g碳酸锂+ 60g石灰+ 11.098g硅铁产出:6.054g 锂 +23.784g CO 2+81.26g 渣可计算出有关的技术经济指标:产品率6.9%,渣率93.1%,碳酸锂消耗:6.607t/t-Li ;石灰消耗:9.911吨;硅铁消耗:1.833吨;副产渣:13.42吨;硅铁利用率72.75%。
硅热法生产金届雀流程图d)、铝热还原法由于铝比硅具有更高的活性,可大规模生产,价格也不太高,所以采用铝作还原剂,更为适宜。
3Li2O+2AI=AI 2O3+6U但试验发现,在采用铝还原剂时会生成铝酸盐,因此,必须向混合物中添加CaO这样的强碱,才能使反应顺利进行。
因此,总反应是:3Li 2O+CaO+2AI=CaO ?AI 2O3+6Li. . 6当采用Li2O ?CaO和铝压团,在 900C下,真空度小于 1.3 x 10-大气压时,经过十五个小时的反应,锂的回收率可达80.6%。
也有人采用锂辉石矿为原料,添加CaQ用铝直接还原,在真空条件下,于1150C时,锂的提取率为 92.2%,对此,曾成功地进行过半工业试验,每次装10kg左右的料,锂的提取率达到95%由此申请了两个铝热还原法的专利。
、\资料来源工艺参数1 2 3 4原料口20 Li2O?Al2O?2SiO2 □ 2CO3 Li2O还原剂Al Al 或 Si Al Al添加剂CaO CaO CaO SiO2还原温度900 1200 1200 1200真空度(mmHg)<1.3*10-6<2*10-2_2<1*10 2_2 <1*10 2还原率% 80.6 95 95 91金属锂质量99 98.5 99.5 99.9 某工艺:碳酸锂与铝氧土按分子比1:1进行配料,焙烧后制得铝酸锂烧成料,铝粉作还原剂,在13〜68Pa真空及1150C〜1200C下进行还原作业,锂的回收率为90%。
焙烧作业表示为:Li2CO3+AI 2O3=CO2+Li 2O?AI 2O3还原作业可表示为:Li2O?Al2O3+2/3AI=2Li+4/3 Al 2O3当锂回收率90%时,可以计算出有关的技术经济指标:产品率:8.4%;渣率91.65% ;渣组成:Li 2O?Al 2O39.61% ; AI1.31% ; Al 2O 389.08%。
这是一种优质的铝氧土,可以作为碳酸锂的焙烧助剂。
在用渣作为焙烧助剂时,计算结果表明可以取得用铝氧土作助剂相同的技术效果外,还可以提高铝的利用率及锂的回收率(由90%提到97.5%),减少了碳酸锂用量,每吨金属锂的原材料成本可以降低 20 %以上。
金属锂的生产(电解)当前金属锂唯一的工业生产方法是氯化锂——氯化钾融盐电解法。
电解质中氯化锂为55%,氯化钾为45%,电解在460 C左右进行。
电流效率约 80%。
金属锂纯度99.8%。
生产1公斤金属锂需要电解 6公斤氯化锂,电解时,氯化锂中的钠全部富集到金属锂中,因此,氯化锂中的钠量对金属锂的产品纯度影响很大。
用高纯氯化锂电解,则可直接制得用于锂电池的高纯金属锂。
纯度在99.9%以内的金属锂,主要从改进现有融盐电解工艺可直接制取。
制取纯度高于99.9%的金属锂,则需要采取提纯措施。
国外提纯金属锂的方法有:真空蒸馏法、过滤法、区熔法、吸收法、氢还原法以及精馏法等。
目前工业上用的锂电解槽有:德国式、法国式、和美国式三种类型。
美国式锂电解槽,槽体由钢板焊成,外壁和底部用气体火焰加热,由顶部插入5根直径203.2毫米,长1.52米的石墨阳极,垂直安放。
阴极固定在槽底,由低碳钢制作。
正常作业条件是:槽温450~475 C,直流电压6~6.5伏。
电解槽总容量约为 3立方米,每公斤金属锂耗电46度(不包括加热熔盐用能耗)。
电解:当今金属锂的工业化生产工艺主要是电解氯化锂和氯化钾熔融混合物,有时也在此电解中加入一些LiBr,或者利用Li z CQ、LiOH在低共熔混合物中直接转化成金属锂。
超纯锂也可从含85〜90%的 LiBr和10〜15%LiCl的熔盐混合物中制得。
金属锂的精炼:金属锂性质活泼,电解得金属锂后要经过1〜2次真空精炼以除去钠、钾和镁等杂质,尔后加工成棒材、带材、或颗粒产品销售。
精炼后的金属锂含Li > 99.9%,其余小于(% :K 0.001 、 Na 0.003 、 Ca 0.008 、 Al 0.003 、 Fe 0.002 、 Ni 0.003 、 Cl 0.006 、 Si0.004 。
金属锂的生产工艺(还原)熔盐电解法制取金属锂的主要缺点是锂必不可免地被钠和钾所污损,而且阳极析出的氯气也需处理和利用。
真空热还原法则可避免这些缺点。
它可以从Li2O、 Li2O?Al2O3 甚至直接从锂辉石得到金属锂。
从而省却了制取对设备有腐蚀作用的无水氯化锂的过程。
当以Li?。
为原料时,Li2O是由U2CO3分解而得到的。
Li 2CO3上CO?的平衡压力在810、 890和1270C时分别为2、4.3及101kPa。
为了使熔点为 735C的U2CO3在热分解时不致熔化而使CO2难于析出,是将Li2CO3和CaO按质量比为1 : 1.5制团,再将团块在真空下热分解的。
产物则是 Li 2O和CaO 的混合物。
它对于下一步的真空热还原过程也是有利的。
还原剂用硅粉, 2Li 2O+Si==4Li+SiO 2在标准状态下的吉布斯自由能变化为正值,并且是吸热反应;△ &278= +298Kj , △ H)278= +320Kj。