数字调制概述
- 格式:doc
- 大小:634.50 KB
- 文档页数:8
无线通信中的信号调制技术随着科技的不断进步,人们的通信方式也在不断地变化。
现在,无线通信已经成为我们日常中不可或缺的一部分。
而无线通信的基础就是信号调制技术。
信号调制技术是指将模拟信号或数字信息转换为适合载波信号传输的信号形式的技术。
本文将介绍无线通信中常用的信号调制技术。
一、模拟调制技术模拟调制技术是指将模拟信号转换成适合在载波上进行传输的信号形式。
常见的模拟调制技术有调幅(AM)、调频(FM)、单边带(SSB)等。
其中,调幅技术是将模拟信号通过幅度调制的方式转化为适合在载波上传输的信号形式。
调频技术则是将模拟信号通过频率调制的方式转化为适合在载波上传输的信号形式。
而单边带技术则是将信号的一个单边带(一半)通过滤波器去除,从而使其更适合在有限频带范围内进行传输。
二、数字调制技术数字调制技术指的是将数字信息转化为适合在载波上传输的信号形式。
数字调制技术常见的有ASK(振幅移位键控)、FSK(频率移位键控)、PSK(相位移位键控)、QAM(正交振幅调制)等。
其中,PSK技术是利用信号的相位进行调制,而ASK技术则是利用信号的振幅进行调制。
FSK技术则是利用不同频率进行调制,QAM技术则是采用相位和振幅的双重调制方式。
三、OFDM技术OFDM技术(正交频分复用技术)是一种在宽带传输系统中广泛应用的数字调制技术。
它将数据信号分为多个子信号,并在不同的频率上对不同的子信号进行调制。
OFDM技术可增加传输速率,提高信号的抗噪性能,减少传输时的误码率,因此其已成为4G和5G数字移动通信系统中常用的技术。
OFDM技术在实现高速数据传输、频谱利用率优化等方面发挥了重要作用。
结尾无线通信中的信号调制技术是通信技术中一个非常重要的部分。
通过了解以上几种常见的信号调制技术,我们可以更好地理解和使用无线通信设备。
信号调制技术与传输性能、功率和频率带宽密切相关,因此在实际应用中,需要根据通信环境、传输要求和技术条件进行合理的选择和运用。
数字调制技术数字调制技术调制技术概述调制基础信号的表示方法IQ调制实现方式基本数字调制:ASK、FSK、PSK FSK、MSK和GMSKPSK调制BPSKQPSKOQPSKQAM调制正交频分复用OFDM各种调制的应用调制调制——就是对消息源信息进行编码的过程,其目的就是使携带信息的信号与信道特性相匹配以及有效的利用信道。
多径衰落、多普勒频率扩展;日益增加的用户数目,无线信道频谱的拥挤这些因素对调制方式的选择都有重大的影响。
信号的表示I/Q信号基础I/Q是什么?--I/Q调制过程基带复信号表示方法I/Q调制实现过程数字调制基本类型U MOD(t)=ÛC(t)cos[ C t+ C(t)]AMConventional ModulationDigital ModulationASK,Amplitude Shift KeyingU 01110数字调制基本类型U MOD(t)=ÛC(t)cos[ C t+ C(t)]FMConventional ModulationDigital Modulation FSK,Frequency Shift KeyingU11100tPSK,Phase Shift Keying 数字调制基本类型tU0000111U MOD (t)=ÛC (t)cos [ C t + C (t)]MConventional Modulation Digital ModulationFSKs 2FSK (t )b (t )f 1f 1f 1f 2f 2f 2111000(a )相位不连续的FSK波形22cos()t +11cos()t +(b )相位连续的FSK波形b (t )111s 2FSK (t )c (t )f 1f 1f 1f 2f 2f 2()t (载波)图3.32FSK信号的波形MSK-最小相移键控MSK的频谱frequency:500MHz,bitrate:270kBit/sec,data:PRBS-sequence (511Bits)MSK特点MSK信号是恒包络信号码元转换时刻,信号的相位是连续的,以载波相位为基准的信号相位在一个码元期间内线性的变化+/-90度。
数字调制技术一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。
将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。
在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。
数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。
在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。
主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。
1.幅移键控幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。
幅移键控载波在数字信号1或0的控制下通或断。
在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。
那么,在接收端就可以根据载波的有无还原出数字信号1和0。
移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。
二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。
2. 频移键控频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。
各种数字调制方式的原理、应用和发展的重新评析序号. 内容1. 引言:数字调制是现代通信中的基础概念之一。
它是将数字信息转换成模拟信号或电磁波的技术,以实现信息的传输和处理。
本文将重新评析各种数字调制方式的原理、应用和发展,旨在提供一个全面、深入的理解。
2. 调幅(AM)调制- 原理:调幅是最早的数字调制方式之一,它基于模拟信号和载波信号的幅度变化来表示数字信息。
原始数字信号的振幅被乘以载波信号的振幅以实现调制。
- 应用:调幅广泛应用于广播电台、电视传输和一些简单的数据传输系统中。
它具有简单、成本低和易于实现的优势。
- 发展:随着技术的进步,调幅逐渐被其他数字调制方式所取代,因为它在传输效率和抗干扰性方面存在限制。
3. 调频(FM)调制- 原理:调频通过改变载波信号的频率来表示数字信息。
原始数字信号的频率变化被转化为载波信号的频率变化。
- 应用:调频广泛应用于广播、无线通信和卫星通信等领域。
它具有较好的抗干扰性和传输质量,适用于要求音频质量较高的应用场景。
- 发展:随着数字通信的发展,调频逐渐被更高效的数字调制方式所取代。
4. 调相(PM)调制- 原理:调相通过改变载波信号的相位来表示数字信息。
原始数字信号的相位变化被转化为载波信号的相位变化。
- 应用:调相主要应用于无线电导航、雷达和卫星通信等领域。
它具有较好的抗噪声能力和低误码率特性。
- 发展:调相在一些特定应用领域仍然具有重要意义,但随着数字技术的发展,更复杂的调制方式逐渐取代了调相。
5. 正交频分复用(OFDM)调制- 原理:OFDM是一种多子载波调制技术,它将一个宽带信号划分为多个窄带子信道进行调制。
每个子信道使用基于正交的调制技术,使得它们之间可以同时传输。
- 应用:OFDM广泛应用于Wi-Fi、4G、5G等无线通信系统中。
它通过利用频谱资源的高效利用和抗多径衰落的能力,显著提高了通信系统的传输速率和可靠性。
- 发展:OFDM是目前最常使用的数字调制方式之一,而且随着技术的不断发展,它仍在不断演进和优化。
3.4.1数字调制概述1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。
随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。
现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。
1.数字调制概述数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。
由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。
模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。
由于数字信号只有“0”和“1”两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。
常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。
更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。
此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。
近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。
总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。
数字调制的概念
数字调制是指将数字信号转换为模拟信号的一种技术。
其基本原理是将数字信号中的信息转换为一系列的数字码,再将这些数字码转换为相应的模拟信号,如电压、电流等。
数字调制技术包括了多种调制方式,如脉冲编码调制(PCM)、频率移键调制(FSK)、相位移键调制(PSK)和正交振幅调制(QAM)等。
这些调制方式广泛应用于数字通信、数字广播、数字电视等领域,成为现代通信技术中不可或缺的一部分。
数字调制技术的发展,不仅拓展了通信的应用范围,而且提高了通信的可靠性和传输速率。
- 1 -。
3.4.1数字调制概述1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。
随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。
现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。
1.数字调制概述数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。
由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。
模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。
由于数字信号只有“0”和“1”两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。
常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。
更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。
此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。
近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。
总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。
2.映射信息与表示、承载它的信号之间存在着对应关系,这种关系称为“映射”。
接收端正是根据事先约定的映射关系从接收信号中提取发射端发送的信息的。
信息与信号间的映射方式可以有很多种,不同的通信技术就在于它们所采用的映射方式不同。
实际上,数字调制的主要目的在于控制传输效率,不同的数字调制技术正是由其映射方式区分的,其性能也是由映射方式决定的。
一个数字调制过程实际上是由两个独立的步骤实现的:映射和调制,这一点与模拟调制不同。
映射将多个二元比特转换为一个多元符号,这种多元符号可以是实数信号(在ASK调制中),也可以是二维的复信号(在PSK和QAM调制中)。
例如在QPSK调制的映射中,每两比特被转换为一个四进制的符号,对应着调制信号的4种载波。
多元符号的元数就等于调制星座的容量。
在这种多到一的转换过程中,实现了频带压缩。
3.4.2 调制方式数字调制就是将数字符号变成适合于信道传输的波形。
所用载波一般是余弦信号,调制信号为数字基带信号。
利用基带信号去控制载波的某个参数,就完成了调制。
调制的方法主要是通过改变余弦波的幅度、相位或频率来传送信息。
其基本原理是把数据信号寄生在载波的上述三个参数中的一个上,即用数据信号来进行幅度调制、频率调制或相位调制。
数字信号只有几个离散值,因此调制后的载波参数也只有有限个值,类似于用数字信息控制开关,从几个具有不同参量的独立振荡源中选择参量,为此把数字信号的调制方式称为“键控”。
数字调制分为调幅、调相和调频三类,分别对应“幅移键控”(ASK)、“相移键控”(PSK)和“频移键控”(FSK)三种数字调制方式。
在“幅移键控”方式中,当“1”出现时接通振幅为A的载波,“0”出现时关断载波,这相当于将原基带信号(脉冲列)频谱搬到了载波的两侧。
如果用改变载波频率的方法来传送二进制符号,就是“频移键控”的方法,当“1”出现时是低频,“0”出现时是高频。
这时其频谱可以看成码列对低频载波的开关键控加上码列的反码对高频载波的开关键控。
如果用“0”和“1”来改变载波的相位,则称为“相移键控”。
这时在比特周期的边缘出现相位的跳变,但在间隔中部保留了相位信息。
接收端解调通常在其中心点附近进行。
一般来说,PSK系统的性能要比开关键控FSK系统好,但必须使用同步检波。
调制的基本原理是用数字信号对载波的不同参量进行调制,其基本公式如下:载波S(t)= Acos(ωt+ψ)S(t)的参量包括:幅度A、频率ω、初相位ψ,调制就是要使A、ω或ψ随数字基带信号的变化而变化。
其中ASK调制方式是用载波的两个不同振幅表示0和1;FSK调制方式是用载波的两个不同频率表示0和1;而PSK调制方式是用载波的起始相位的变化表示0 和1。
根据传输信号是二进制信号还是多进制信号和对载波的哪个参数进行调制,可以把数字频带传输分为:二进制、多进制数字振幅键控(ASK)二进制、多进制数字频移键控(FSK)二进制、多进制数字相移键控(PSK)二进制、多进制差分相移键控(DPSK)除上面所述的二相位、二频率和二幅度系统外,还可以采用各种多相位、多振幅和多频率的方案。
在DVB系统中卫星传输采用QPSK,有线传输采用QAM方式,地面传输采用COFDM (编码正交频分复用)方式。
但ASK、PSK和FSK这三种数字调制方式仍是最主要的,所以本节要对这三种调制技术,以及上面提到的QAM调制技术分别进行具体介绍。
1.ASK幅移键控(Amplitude Shift Keying)“幅移键控”又称为“振幅键控”,记为ASK。
也有称为“开关键控”(通断键控)的,所以又记作OOK信号。
ASK是一种相对简单的调制方式。
幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。
幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
二进制振幅键控(2ASK),由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号为“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。
原理如图3-24所示,其中s(t)为基带矩形脉冲。
一般载波信号用余弦信号,而调制信号是把数字序列转换成单极性的基带矩形脉冲序列,而这个通断键控的作用就是把这个输出与载波相乘,就可以把频谱搬移到载波频率附近,实现2ASK。
实现后的2ASK波形如图3-25所示。
图3-24 ASK调制原理图3-25 输出后的2ASK波形2.FSK频移键控(Frequency Shift Keying)所谓FSK就是用数字信号去调制载波频率,是数字信号传输中用的最早的一种调制方式。
此方式实现起来比较容易,抗噪声和抗衰减性能好,稳定可靠,是中低速数据传输最佳选择。
频移就是把振幅、相位作为常量,而把频率作为变量,通过频率的变化来实现信号的识别,原理如图3-26所示。
在FSK中传送的信号只有0和1两个,而在M-FSK中则通过M个频率代表M个符号。
输出后的2FSK波形如图3-27所示。
图3-26 2FSK调制原理图3-27 输出后的2FSK波形3.PSK相移键控(Phase Shift Keying)在PSK调制时,载波的相位随调制信号状态不同而改变。
如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,此时它们就处于“同相”状态;如果一个达到正最大值时,另一个达到负最大值,则称为“反相”。
一般把信号振荡一次(一周)作为360度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。
当传输数字信号时,“1”码控制发0度相位,“0”码控制发180度相位。
PSK相移键控调制技术在数据传输中,尤其是在中速和中高速的数传机(2400bit/s~4800bit/s)中得到了广泛的应用。
相移键控有很好的抗干扰性,•在有衰落的信道中也能获得很好的效果。
我们主要讨论二相和四相调相,在实际应用中还有八相及十六相调相。
PSK也可分为二进制PSK(2PSK或BIT/SK)和多进制PSK(MPSK)。
在这种调制技术中,载波相位只有0和π两种取值,分别对应于调制信号的“0”和“1”。
传“1“信号时,发起始相位为π的载波;当传“0”信号时,发起始相位为0的载波。
2PSK的调制原理如图3-28所示。
由“0”和“1”表示的二进制调制信号通过电平转换后,变成由“–1”和“1”表示的双极性NRZ(不归零)信号,然后与载波相乘,即可形成2PSK信号,如图3-29所示。
图3-28 2PSK调制原理图3-29 输出后的2PSK波形在MPSK中,最常用的是四相相移键控,即QPSK(Quadrature Phase Shift Keying),在卫星信道中传送数字电视信号时采用的就是QPSK调制方式。
QPSK调制器及相应波形分别参见图3-30所示(而2PSK的调制器及相应波形则分别参见图3-31所示的(a)、(b)图),对比可以看出,它可以看成是由两个2PSK调制器构成的。
输入的串行二进制信息序列经串—并变换后分成两路速率减半的序列,由电平转换器分别产生双极性二电平信号I(t)和Q (t),然后对载波Acos2πfct和Asin2πfct进行调制,相加后即可得到QPSK信号。
PSK信号也可以用矢量图表示,矢量图中通常以零度载波相位作为参考相位。
四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。
QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°。
调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。
每一个双比特码元是由两位二进制信息比特组成的,它们分别代表四进制四个符号中的一个符号。
QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。
解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。
图3-30 QPSK调制原理图3-31 2PSK调制原理图3-32的PSK信号矢量图中画出了2PSK、QPSK、8PSK的矢量图。
图3-32中只画出了矢量的端点,省去了矢量箭头,这样的矢量图也称为“星座图”。
在星座图中,星座间的距离越大,信号的抗干扰能力就越强,接收端判决再生时就越不容易出现误码。
图3-32 PSK信号矢量图以上三种调制技术所对应的波形比较如图3-33所示。