轴心受压构件的整体稳定性
- 格式:ppt
- 大小:4.70 MB
- 文档页数:56
(4)一.选择题1.轴心压杆整体稳定公式f AN ≤ϕ的意义为 。
A 、截面平均应力不超过材料的强度设计值;B 、截面最大应力不超过材料的强度设计值;C 、截面平均应力不超过构件的欧拉临界应力值;D 、构件轴心压力设计值不超过构件稳定极限承载力设计值。
2.用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,前者的稳定系数 后者的稳定系数。
A.大于B.小于C.等于或接近D.无法比较3. a 类截面的轴心压杆,其整体稳定系数值最高是由于 。
A 、截面是轧制截面;B 、截面的刚度最大;C 、初弯曲的影响最小;D 、残余应力的影响最小。
4.轴心受压构件的整体稳定系数ϕ与 等因素有关。
A.构件截面类别、两端连接构造、长细比B 构件截面类别、钢号、长细比C.构件截面类别、计算长度系数、长细比D.构件截面类别、两个方向的长度、长细比5.为防止钢构件中的板件失稳采取加劲肋措施,这一做法是为了 。
A 、改变板件的宽厚比;B 、增大截面面积;C 、改变截面上的应力分布状态;D 、增加截面的惯性矩。
6.轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为 。
A.格构式构件的整体稳定承载力高于同截面的实腹构件B 考虑强度降低的影响C.考虑剪切变形的影响D.考虑单肢失稳对构件承载力的影响7. 计算格构式压杆对虚轴x 轴的整体稳定性时,其稳定系数应根据 查表确定。
A 、x λB 、ax λC 、y λD 、oy λ8.双肢缀条式轴心受压柱绕实轴和虚轴等稳定的要求是( ),x 轴为虚轴。
A 、12027A A x y +=λλB 、 1227A A x y +=λλ C 、y x 00λλ= D 、y x λλ=9. 实腹式轴心压杆绕x 、y 轴的长细比分别为x λ、y λ,其稳定系数分别为y x ϕϕ,,若y x λλ=,则 。
A 、y x ϕϕ>B 、y x ϕϕ=C 、y x ϕϕ<D 、需根据稳定性分类判别10. 实腹式轴心受压构件应进行 。
建材发展导&!"构轴%受压构件*定性分.袁业宏摘要:阐述了钢结构体系中的稳定性的概念、分类和基本原理,介绍了钢结构轴心受压构件局部失稳的原理、形式和在钢结构设计中相的解s关键词:钢结构体稳定性;局部稳定性钢构具有度高构震性具有良好的塑性和韧性等特点,随着社会的展,钢结构不断得到了广泛的应用,在钢构设计中,受构件占50%以上,轴受压构件的工作也占50%以上,其中,受压构件稳定性成了钢构设计的一突,钢构体系中的受构件稳定性验算已变成了中。
1钢结构轴心受压构件整体稳定性的概念钢结构轴心受压构件是指轴心方向受到压力等构件,钢结构轴心受压构件体稳定性是指构或者构件处于稳定的平衡状态,处平衡位置的构或构件,在任微小界扰动下,将偏离其平衡位置。
当界扰动去除,仍自动回复到初始平衡位置。
这是一种理想状态,可以说构整体处稳定状态。
2失稳的概念及引起钢结构轴心受压构件失稳的主要原因处平衡位置的构或构件,在当界扰动去除,不回复到初始平衡位置,初始平衡状态就是稳定的平衡状态:随遇平衡状态是从稳定状态向稳定状态渡的一中间状态。
构或构件由平衡形的稳定性.从初始平衡位置转变到另一平衡位置,即称屈曲,或称失稳。
引起钢构轴受压构件失稳的主要原因一般有如下几点:2.1构度不构件面度以引起构件失稳。
度这一,解所具有的…钢结构轴心受构件面度,的塑性变形而失去。
轴受构件度验算公:!!#=N/A(!几是指构或者构件在稳定平衡状态下由所引起的应力(或内力)没有超的极限度,因此是一应。
极限度的取取决的特性,钢常取的屈点作极限度。
而,有极的,或者有的轴受,会因面的平应到设计度而失,是度计算起作用。
2.2构度不构件面度以引起构件失稳。
度这一,解所具有变形的o轴受构件的度是用构件"来度的,考虑到轴受构件的截面2个轴向,取面2轴线方向中一方用"咖表示,由此得到构件长细比计算公式仏)碍!["],由上式可知:长细比愈小,表示I构件的度愈大,反之刚度愈小。
钢筋混凝土轴心受压构件的稳定系数是一个重要的参数,用于评估构件在受压状态下的稳定性。
在钢筋混凝土结构设计中,轴心受压构件承受的压力会引起构件的变形和破坏,因此需要通过稳定系数来考虑构件的稳定性,确保结构的安全性和可靠性。
在本文中,我将深入探讨钢筋混凝土轴心受压构件的稳定系数表,并分享一些关于这个主题的观点和理解。
1. 稳定系数的定义和意义稳定系数是指构件在受压状态下的稳定性与材料强度之间的比值。
它的值代表了构件抵抗稳定性失效的能力,是判断结构是否满足稳定性要求的关键指标。
稳定系数的计算通常基于一定的假设和理论模型,考虑到材料的弹性模量、几何形状、截面特性以及加载方式等因素。
通过建立稳定系数表,我们可以根据构件的几何形状和受力情况,查找相应的稳定系数值,从而进行结构设计和评估。
2. 稳定系数表的结构和内容稳定系数表包括了各种不同构件和截面形状的稳定系数数值,供工程师和设计人员参考使用。
它通常按照构件的类型和截面形状进行分类,提供了一系列的稳定系数数值。
稳定系数表的结构可以按照以下方式进行组织:2.1 构件类型分类:比如梁、柱、墙等,每种构件类型都有独立的稳定系数表。
2.2 截面形状分类:对于每种构件类型,按照不同的截面形状建立子表,比如矩形截面、圆形截面、T形截面等。
2.3 参数分类:在每个子表中,根据构件的尺寸、材料强度和约束条件等参数,列出相应的稳定系数数值。
3. 稳定系数表的应用和设计原则稳定系数表是钢筋混凝土结构设计中的重要工具,为设计人员提供了参考数值,帮助他们评估和选择合适的构件尺寸和截面形状。
在使用稳定系数表时,设计人员应该遵循以下几个原则:3.1 参考适用范围:稳定系数表通常针对一定的材料强度、构件尺寸范围和约束条件进行编制,设计人员需要根据实际情况选择合适的表格进行参考。
3.2 综合考虑各因素:稳定系数的数值取决于材料的强度、构件的几何形状和加载方式等因素,设计人员需要对这些因素进行综合考虑,以确保稳定系数的准确性和适用性。
第七章 稳定性验算整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。
注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。
局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。
注意:热轧型钢不必验算局部稳定!第一节 轴心受压构件的整体稳定和局部稳定一、轴心受压构件的整体稳定注意:轴心受拉构件不用计算整体稳定和局部稳定!轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。
构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。
这种现象就叫做构件的弯曲失稳或弯曲屈曲。
不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。
弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力:2222//λππEA l EI N cr == (7-1)推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:/22=+Ny dz y EId(7-2) 令EI N k/2=,则: 0/222=+y k dz y d (7-3)解得:kz B kz A y cos sin += (7-4)边界条件为:z=0和l 处y=0;则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=,故 2222//λππEA l EI N cr == (7-5)其它支承情况时欧拉临界力为:2222/)/(λπμπEA l EI N cr ==(7-6)欧拉临界应力为:22/λπσE cr =(7-7)实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。
轴心受压构件的稳定系数,即纵向弯曲系数,在结构设计和分析中扮演着非常重要的角色。
它是用来描述构件在受压状态下的稳定性能,并在设计中扮演着至关重要的作用。
在本篇文章中,我将从深度和广度两方面对轴心受压构件的稳定系数进行全面评估,并据此撰写一篇有价值的文章。
让我们来了解一下轴心受压构件的基本概念。
轴心受压构件是指在受压状态下轴心受力的构件,例如混凝土柱、钢柱等。
在设计和分析中,我们需要考虑构件在受压状态下的稳定性能,以确保结构的安全可靠。
而轴心受压构件的稳定系数,即纵向弯曲系数,就是用来描述构件在受压状态下的稳定性能的重要参数之一。
在实际的设计和分析中,我们需要根据构件的几何形状、材料性质、受力条件等因素来计算轴心受压构件的稳定系数。
稳定系数的大小直接影响着构件在受压状态下的稳定性能,因此在设计中需要进行综合考虑并进行合理设计。
在计算稳定系数时,我们需要考虑构件的截面形状、长细比、材料的本构关系等因素。
在满足构件受压强度的前提下,稳定系数的大小应该尽可能大,以确保构件在受压状态下的稳定性能。
我们需要通过合理的截面设计、优化材料选用等方式来提高稳定系数,以满足结构的设计要求。
除了计算稳定系数外,我们还需要对轴心受压构件在受力状态下的稳定性进行全面的评估。
在实际的设计和分析中,我们需要考虑构件在受压状态下的整体稳定性、局部稳定性以及稳定性的失效模式等因素,以确保结构的安全可靠。
轴心受压构件的稳定系数在结构设计和分析中扮演着非常重要的角色。
在设计过程中,我们需要综合考虑构件的几何形状、材料性质、受力条件等因素,通过合理的计算和优化设计来提高稳定系数,以确保构件在受压状态下的稳定性能。
我们还需要对构件在受力状态下的整体稳定性、局部稳定性等进行全面的评估,以保证结构的安全可靠。
希望通过本篇文章的阐述,能够帮助你更深入地理解轴心受压构件的稳定系数这一重要概念。
个人观点和理解方面,在实际的工程实践中,轴心受压构件的稳定系数的计算和优化设计是非常复杂的,需要全面考虑构件的各项参数。
钢构件稳定性问题分析与设计建议摘要:本文针对钢结构稳定问题及设计人员应掌握的相关基本概念进行了较为深入的剖析,并对避免各失稳问题提出了有效措施,可供相关工程设计人员参考和借鉴。
关键词:钢结构构件;稳定性;失稳现象;节点设计Abstract: This article in view of the steel structure stability problems and design personnel should master the basic concept of the relevant for a more in-depth studiy, and to avoid the instability problems, advances some effective measures, for relevant engineering design personnel for reference.Key Words: steel structure component; Stability; Instability phenomena; Node design近年来,国内外由于在钢结构工程设计时对钢结构稳定问题重视不够,引发的工程事故已不鲜见,图(1)为国内某钢屋盖,因受压上弦杆平面外的支撑布置不足,出现了因平面外失稳而导致的破坏。
影响最大的就是1907年加拿大魁北克一座大桥在施工中发生破坏事故,9000t钢结构全部坠入河中,桥上施工的人员中有75人遇难。
其破坏是由于悬臂的受压下弦失稳造成的。
a-屋盖破坏情况b-有屋盖支撑时的屋架上弦平面外计算长度;c-无屋盖支撑时的屋架上弦平面外计算长度注:为上弦杆在屋架平面外的计算长度;为上弦杆的扭转计算长度。
图1某钢结构屋盖的破坏情况[1]设计者的经验不足或对结构及构件的稳定性把握不准,是造成此类事故的根本原因。
1 轴心受压稳定问题1.1轴心受压构件的整体稳定性的基本认识根据《钢结构设计规范》(GB50017-2003)规定,钢构件的设计必须满足强度、刚度和稳定性要求。