管壳式换热器各部件名称
- 格式:doc
- 大小:35.00 KB
- 文档页数:1
管壳式换热器简图1-管子;2-封头;3-壳体;4-接管;5-管板;6-折流板管板的设计管板基本情况•••管板基本情况管板基本情况管板强度分析的三种基本假设•••管板结构简化模型1管板结构简化模型2管板结构简化模型3荷、放置在弹性基础上的受管孔均匀削弱的当量圆平板GB151《管壳式换热器》中管板设计的基本考虑••••黄克智院士和管板设计规范黄克智院士和管板设计规范••••黄克智院士和管板设计规范•••黄克智院士和管板设计规范•“全国科学大会奖”••黄克智院士和管板设计规范黄克智院士和管板设计规范••••••管板的设计思路-1• 1 管板的弹性分析变形协调条件管板内力与变形分析管板的设计思路-2• 2 危险工况的确定由于换热器运行时,不能保证管程与壳程压力同时作用,在计算管板应力或厚度时,要考虑以下四种危险工况:a) 只有壳程压力Pt,管程压力Pt=0,不考虑温差b) 只有壳程压力Ps,管程压力Pt=0,考虑温差,正温差比负温差危险,分别为管子与壳体的线膨胀系数分别为管子与壳体的平均壁温为换热器装配时的温度()()00θθαθθα−>−s s t t t αs αt θs θ0θ管板的设计思路-2• 2 危险工况的确定c) 只有管程压力Pt,壳程压力Ps=0,不考虑温差d) 只有管程压力Pt,壳程压力Ps=0,考虑温差,负温差比正温差危险,()()00θθαθθα−<−s s t t管板的设计思路-3 3 管板应力的校核径向应力随半径变化曲线管板的设计思路-4 3 管板应力的调整工程中实际做法-1借助压力容器设计软件管板设计的辅助软件管板的计算十分繁杂,尽管GB151提供了便于工程应用的计算式和图表,但手算工作量很大,为此,我国已开发了包括管壳式换热器在内的化工设备强度计算软件,SW6,包括了管板的设计与校核。
SW6-1998 V2.0 《过程设备强度计算软件包》及PVCAD《计算机辅助设计软件包》压力容器设计计算软件包•SW6《过程设备强度计算软件包》,以下简称SW6-98。
第十七章管壳式换热器(shellandtubeheatexchange)本章重点讲解内容:(1)熟悉管壳式换热器的整体结构及其类型;(2)熟悉主要零部件的作用及适用场合;(3)熟悉膨胀节的功能及其设置条件。
第一节总体结构管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程(tube-side);管外的通道及与其相贯通的部分称为壳程(shell-side)。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
以下结合不同类型的管壳式换热器介绍其相应的总体结构。
1、固定管板换热器其由壳体、管束、封头、管板、折流挡板、接管等部件组成。
结构特点为:两块管板分别焊于壳体的两端,管束两端固定在管板上。
换热管束可做成单程、双程或多程。
它适用于壳体与管子温差小的场合。
图1固定管板换热器结构示意图优点:结构简单、紧凑。
在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。
缺点:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50°C)时产生温差应力,需在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高。
固定管板式换热器适用于壳方流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的场合。
2、浮头式换热器浮头式换热器适用于壳体和管束壁温差较大或壳程介质易结垢的场合。
结构特点是两端管板之一不与壳体固定连接,可在壳体内沿轴向自由伸缩,称为浮头。
图2浮头式换热器结构示意图优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可从壳体内抽出,便于管内和管间的清洗。
管式换热器组成管式换热器是一种常见的换热设备,通常用于工业生产过程中的热能转移。
管式换热器由多个组件和部件组成,每个组件和部件都有各自的功能和作用。
下面将详细介绍管式换热器的组成。
1. 管束管束是管式换热器的核心部件,由许多平行的管组成。
在管束内,热媒流体通过内径小、长度相等的管,被散热或吸热,在管壳外的冷、热介质再将热量传出或吸入。
管束的材质通常是金属,如铜、钢、不锈钢等,以保证其能承受高温和高压的环境。
2. 管板管板是管束的支撑部件,起到支撑、固定管束的作用。
管束的两端分别设有进出口管,通过管板与外部的热媒相连接。
常见的管板类型包括固定式和泛定式两种,分别适用于不同的流体压力和温度。
3. 壳体壳体是管束的外壳,用于隔离管束与环境。
壳体的材质通常为铁制或不锈钢制,以确保其具有足够的耐用性和耐腐蚀性。
壳体的结构也有多种形式,如衬板分隔壳体、单壳体、双壳体等。
4. 密封管式换热器的设计中通常有两种密封:管束与管板之间的密封和管束与壳体之间的密封。
为保证管式换热器长期稳定运行,密封件材质应该具有优异的耐温、耐腐蚀和耐压能力。
5. 内部配件在管束内部,还需要安装一些辅助配件,如内弯管、外弯管、管子和隔板等。
这些配件的作用是增加流体的流动阻力,强制热媒在管束内部多次穿行,以增强换热效果。
此外,这些配件还可以增加管束的强度和稳定性。
在管式换热器的运行中,还需要一些外部配件来保证其正常运行。
常见的外部配件包括水面控制器、流量计、压力表等。
这些设备可以检测、调节和控制流体的流量、压力和温度,进一步保证管式换热器的高效运行。
总之,管式换热器的组成由多个部分组成,每个部分都有各自的作用。
采用优质的材料和配件,设计合理的结构,可以保证管式换热器具有高效、稳定、安全的性能表现。
管壳式换热器设计参数的选择摘要:文章探讨了管壳式换热器设计过程中管箱、壳体、管束、折流板和防冲板等参数的选择,提出了对设计过程中常见问题的解决方案,可以为此类换热器的设计提供参考。
关键词:管壳式换热器,管箱,壳体,管束,折流板,防冲板,设计Parameters Determine in Shell-Tube Heat Exchanger DesigningZhou Hai-ge*, SUN Ai-jun(China Textile Industry Engineering Institute, Beijing 100037)Abstract: Parameters determine of tube box, shell, bundle, baffle and impingement in shell-tube heat exchanger designing is discussed in this article. Propose the solution to ordinary question in designing. It is can be the reference for this type exchanger designing.Keywords: shell-tube heat exchanger, tube box, shell, bundle, baffle, impingement, design引言管壳式换热器是石化行业中应用最广泛的间壁式传热型换热器,适用范围从真空到超高压(超过100MPa),从低温到高温(超过1100℃),约占市场多于65%的份额[1],因此对于工程设计人员来说,管壳式换热器的设计十分重要。
管壳式换热器的主要组合部件包括壳体、前端管箱和后端结构(含管束)三部分。
管箱、壳体、管束、折流板、防冲板等设计参数决定了换热器的类型、规格及性能特点。
1. 管箱1.1 前端管箱的选择原则GB151中分别列出了A、B、C、N、D五种前端管箱型式[2]。
管壳式换热器的工作原理及结构
管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、制药、食品等行业中。
它的工作原理是利用管内流体与管外流体之间的热量传递,将热量从一个介质传递到另一个介质中,以达到加热、冷却或蒸发等目的。
管壳式换热器的结构主要由管束、壳体、管板、支撑件、密封件、进出口管道等组成。
其中,管束是由许多平行排列的管子组成的,管子的材质可以是不锈钢、铜、钛等,根据不同的介质选择不同的材质。
壳体是管束的外壳,通常采用碳钢、不锈钢等材质制成,具有良好的耐腐蚀性能。
管板是将管束固定在壳体内的关键部件,它可以分为固定管板和浮动管板两种类型。
支撑件是用于支撑管束的部件,通常采用钢制材料制成。
密封件则是用于保证管束与壳体之间的密封性能,通常采用橡胶、聚四氟乙烯等材料制成。
进出口管道则是用于将介质引入或排出换热器的管道。
管壳式换热器的工作原理是将需要加热或冷却的介质通过管道引入管束内,然后通过管子的壁面与管外流体进行热量传递,最后将加热或冷却后的介质从管束中排出。
管外流体则通过壳体内的流道流动,将管内流体传递过来的热量带走,以达到加热或冷却的目的。
在换热过程中,管束和壳体之间的热量传递效率取决于管束的布置方式、管子的材质、流体的流速等因素。
管壳式换热器是一种高效、可靠的换热设备,具有结构简单、维护
方便、适用范围广等优点。
在工业生产中,它被广泛应用于加热、冷却、蒸发等工艺过程中,为生产提供了重要的支持。