结构可靠指标计算的蒙特卡罗法(第二次)讲解
- 格式:ppt
- 大小:1.13 MB
- 文档页数:55
蒙特卡罗方法讲解
蒙特卡洛方法(Monte Carlo Method)又称几何表面积法,是用来解决统计及数值分析问题的一种算法。
蒙特卡洛方法利用了随机数,其特点是算法简单,可以解决复杂的统计问题,并得到较好的结果。
蒙特卡洛方法可以被认为是统计学中一种具体的模拟技术,可以通过模拟仿真的方式来估算一个问题的可能解。
它首先利用穷举或随机的方法获得随机变量的统计数据,然后针对该统计数据利用数理统计学的方法获得解决问题的推断性结果,例如积分、概率等。
蒙特卡洛方法在计算机科学中的应用非常广泛,可以用来模拟统计物理、金融工程、统计数据反演、运行时参数优化以及系统可靠性计算等问题,因此广泛被用于许多不同的领域。
蒙特卡洛方法的基本思想是:将一个难以解决的复杂问题,通过把它分解成多个简单的子问题,再用数学方法求解这些子问题,最后综合这些简单问题的结果得到整个问题的解。
蒙特卡洛方法的这种思路,也称作“积分”,即将一个复杂的问题,分解成若干小问题,求解它们的结果,再综合起来,得到整体的结果。
蒙特卡洛方法以蒙特卡罗游戏为基础,用统计学的方法对游戏进行建模。
Monte Carlo 方法法§1 概述Monte Carlo 法不同于确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。
Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态。
它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。
运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。
普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。
MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。
Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。
“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。
Monte Carlo 方法的应用有两种途径:仿真和取样。
仿真是指提供实际随机现象的数学上的模仿的方法。
一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。
取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。
例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。
这就是数值积分的Monte Carlo 方法。
MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。
任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。
这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。
可靠性与风险分析蒙特卡罗方法蒙特卡罗方法是一种基于随机数和随机过程的数值计算方法,其核心思想是通过模拟大量的随机事件来近似求解复杂的问题。
蒙特卡罗方法最早起源于20世纪40年代的美国曼哈顿计划,用于核武器设计中的概率统计分析。
现在蒙特卡罗方法已广泛应用于金融、工程、风险管理等领域。
在可靠性与风险分析中,蒙特卡罗方法通常用于评估系统的可靠性水平以及可能出现的风险。
通过建立系统的概率模型,并利用随机抽样的方法产生大量的随机样本,可以利用统计方法对样本进行分析,得到系统的可靠性指标以及风险评估。
蒙特卡罗方法的关键是如何建立合适的概率模型和生成随机数的方法。
在可靠性分析中,蒙特卡罗方法可以用来评估系统的失效概率、可用性、可靠度等指标。
通过随机抽样的方式模拟系统的运行过程,并根据系统的运行状态来判断是否发生失效,最终可以得到系统的失效概率等指标。
蒙特卡罗方法的优势在于能够处理复杂的系统结构和故障模式,具有较好的适用性和灵活性。
在风险分析中,蒙特卡罗方法可以用来评估系统的风险水平以及可能的损失。
通过建立系统损失与系统状态之间的概率模型,并利用随机抽样的方式模拟系统的运行过程,可以得到系统的损失分布,从而评估系统的风险水平。
蒙特卡罗方法的优势在于能够考虑不确定性因素的影响,对于复杂的风险分析问题具有很好的适用性。
蒙特卡罗方法在可靠性与风险分析中有着广泛的应用。
在金融领域,可以用蒙特卡罗方法来评估投资组合的风险以及可能的收益;在电力系统中,可以用蒙特卡罗方法来评估电网的可靠性以及可能的故障损失;在工程领域,可以用蒙特卡罗方法来评估工程项目的可靠性以及可能的延误风险。
总之,蒙特卡罗方法在可靠性与风险分析中的应用非常广泛,为决策者提供了一种可靠和灵活的分析工具。
总结起来,可靠性与风险分析蒙特卡罗方法是一种通过随机模拟和统计分析来评估系统的可靠性和潜在风险的方法。
其原理是基于随机数和随机过程的数值计算方法,通过模拟大量的随机事件来近似求解复杂的问题。
Monte Carlo 方法亦称为随机模型(Random simulation )方法,有时也称作随机抽样技术或统计试验方法。
是一类通过随机模拟和统计试验求解数学、物理和工程技术问题近似解的数值方法。
其基本思想是:当实验次数充分多时,某一事件出现的频率近似于该事件发生的概率。
蒙特卡洛方法,也叫蒙特卡洛分析,是一种使用随机抽样统计来估算数学函数的计算方法。
它需要一个良好的随机数源。
这种方法往往包含一些误差,但是随着随机抽取样本数量的增加,结果也会越来越精确。
蒙特卡洛方法在纯数学方面一般用来求解一个函数的定积分。
它的计算过程如下:先在一个区间或区域内随机抽取一定数量的独立变量样本,然后求相应的独立因变量的平均值,最后用随机样本所在区间(或区域)的长度(或大小)乘以所求出的平均值。
它与传统的估算定积分的方法有很大差别,传统方法在区间或区域内抽取样本点时是间隔相等、均匀抽取的。
蒙特卡洛方法以其在第二次世界大战时被用于原子弹的设计而闻名于世。
现在它也已经被应用于多种领域,如超高速公路的运输流量分析、行星演变模型的建立以及股票市场波动的预测。
这种方法同样也可应用于集成电路设计、量子力学和通信工程。
根据车比雪夫定理,设x1, x2,…,xn,…,是相互独立的随机变量序列,它们服从相同的分布,且有有限的数学期望a 和方差 ,则x1, x2,…,xn ,的算术平均值当时 按概率1收敛于a ,即对于任意 >0有: 由中心极限定理得到:即当n 很大时,近似服从标准正态分布。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的"图形",如何求出这个"图形"的面积呢?Monte Carlo 方法是这样一种"随机化"的方法:向该正方形"随机地"投掷N 个点,其中有M 个点落于"图形"内,则该"图形"的面积近似为M/N 。
蒙特卡罗(Monte Carlo method)方法知识详解蒙特卡罗方法(英语:Monte Carlo method),也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
20世纪40年代,在冯·诺伊曼,斯塔尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡罗方法。
因为乌拉姆的叔叔经常在摩纳哥的蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特卡罗方法在金融工程学、宏观经济学、生物医学、计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)机器学习等领域应用广泛。
一、蒙特卡罗方法的基本思想通常蒙特卡罗方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。
例如在核物理研究中,分析中子在反应堆中的传输过程。
中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向。
科学家依据其概率进行随机抽样得到裂变位置、速度和方向,这样模拟大量中子的行为后,经过统计就能获得中子传输的范围,作为反应堆设计的依据。
另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量的期望值。
通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。
这种方法多用于求解复杂的多维积分问题。
假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法基于这样的思想:假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
结构可靠度分析中蒙特卡洛模拟的应用蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。
具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。
由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。
不确定性是工程中存在的客观现象,它影响着结构的安全性。
结构概率设计考虑了实际工程中设计、施工、使用工程中的不确定因素,因此概率设计方法有广泛的应用价值,结构可靠度分析是以概率理论为基础的。
蒙特卡洛法又称随机抽样法或统计试验法。
该方法是通过随机模拟和统计试验来求解结构可靠性的近似数值方法。
当用蒙特卡洛方法求解某一事件的概率时,可以通过抽样试验的方法,得到该事件出现的频率,将其作为问题的解。
采用蒙特卡洛法进行可靠度分析,可以回避结构可靠度分析中的数学困难,既可以不考虑功能函数的复杂性,而且其收敛速度与随机变量的维数无关,极限状态函数的复杂程度与模拟过程无关,更无需将状态函数线性化和随机变量“当量正态”化,具有直接解决问题的能力。
用蒙特卡洛方法模拟结构失效概率时,由于模拟次数总是有限的,所以模拟结果是一个随机变量。
评价蒙特卡洛方法模拟结果好坏或模拟效率的指标是失效概率模拟结果的变异系数。
当变异系数较小时,说明失效概率的变异性小,模拟的准确性较高,模拟结果的可信度较大。
相反,当变异系数较大时,说明失效概率的变异性较大,模拟的准确性不高,模拟结果的可信度不大。
为了提高蒙特卡洛方法估算的精度,一种方法是增加模拟的次数,称为一般抽样法;另一种方法是采用一定的方法降低失效概率的变异系数,称为重要抽样方法。
一、一般抽样法一般抽样方法是结构可靠度蒙特卡洛模拟最基本的方法,重要抽样方法是以一般抽样法为基础的。