高数下册第七章微分方程一、二、三节
- 格式:ppt
- 大小:1.31 MB
- 文档页数:41
高数第七章微分方程知识点
高数第七章微分方程的知识点主要包括:
1. 微分方程的基本概念:微分方程是包含导数或微分的方程,一般形式为
f(x, y', ..., y^{(n)}) = 0。
微分方程的阶数是指微分方程中所含导数或微分的最高阶数。
微分方程的解是指使微分方程成立的函数,不含任意常数的解称为特解,若微分方程的解中所含的相互独立的任意常数的个数与微分方程的阶数相等,称这个解为通解。
2. 高阶微分方程:高阶微分方程是阶数大于一的微分方程。
例如,二阶常系数齐次线性微分方程,形如 y'' + py' + q = 0 (p, q为常数)的方程。
3. 齐次方程:齐次方程是一种特殊的微分方程,可以通过变量代换化为另一种形式的一阶微分方程。
一阶齐次方程的形式为dydx=φ(yx),或者可化为这种形式的方程。
4. 一阶线性微分方程:一阶线性微分方程是包含一个未知函数及其导数的一次幂的方程,形式为 dydx+P(x)y=Q(x)。
如果Q(x)=0,则方程为齐次的,反之为非齐次的。
以上内容仅供参考,建议查阅高数教材或咨询专业人士以获取更准确的信息。
第七章微分方程§ 1 微分方程的基本概念 一. 基本概念 :1. 微分方程 ; 凡表示未知函数 , 未知函数的导数与自变量之间的关系式称为微分方程.2. 常微分方程 ; 如果微分方程中的未知函数是一元函数,则称此类方程为常微分方程.3. 偏微分方程 ;如果微分方程中的未知函数是多元函数,则称此类方程为偏微分方程.4. 微分方程的阶 ; 微分方程中所出现的未知函数的最高阶导数的阶数,就称为此微分方程的阶.5. 微分方程的解 ; 将某个已知函数代入到微分方程的左右两边可使其成为恒等式,那么就称此已知函数为此微分方程的解.6. 微分方程的通解 : 如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相等,则这样的解就称为此微分方程的通解.7. 微分方程的初始条件与特解 .8. 微分方程的积分曲线 : 微分方程的解的图象是一条平面曲线,称此曲线为微分方程的积分曲线. 二.例题分析P263. 5.写出由下列条件所确定的曲线所满足的微分方程 :例 1.曲线在点处( x, y)的切线的斜率等于该点横坐标的平方.解:设该曲线的方程为yf (x) , 则由题意得 : y ' x 2 .--------这就是所需确定的曲线应满足的微分方程.例 2.曲线上点P( x, y) 处的法线与 x 轴的交点为 Q , 且线段 PQ 被 y 轴平分 .解:设该曲线的方程为yf (x) , 且设曲线在点 P 处的法线记为 L ,则其斜率为1/ y' ;设法线L与Y轴的交点为点A,再设法线L上任意一点M的坐标为 M ( X ,Y) ,进而得法线L的方程为:Y y k( X x) 且 k1/ y '即Y y (Xx) / y ' ;则易求得:X Q x y y ' 且 Y A yx / y ' ........①由题意知点A为线段PQ的中点知:X Q X P 2X A 且 Y Q Y P 2Y A ..........②由上述①,②两式最终可得:2xy y ' --------这就是所需确定的曲线应满足的微分方程.§ 2.可分离变量的一阶微分方程(注:它是一类最易求解的微分方程! )一.一阶微分方程的一般形式和一阶微分方程的对称形式:一般形式:F (x, y, y') 0对称形式:P( x, y)dx Q ( x, y)dy 0二.何为可分离变量的一阶微分方程?如果某一阶微分方程由对称式:P(x, y) dx Q(x, y)dy 0 ,可等价地转化为f (x)dx g( y)dy 0 的形式,则称原方程为可分离变量的微分方程.三.可分离变量的一阶微分方程的基本解法:(可由如下两步来完成求解过程)第一步:进行自变量x , dx 与因变量 y , dy 的左右分离;第二步:方程两边同时作不定积分即可求得原方程的隐式通解. §3.一阶齐次微分方程(注:它是一类经变量代换之后,可转化为"变量左右分离的一阶微分方程! )一.一阶齐次微分方程的定义:在某个一阶微分方程也即原方程形如:dy f ( x y ) 中,如果方程右边的函数 f ( x, y) 可写成 y的函数式即 f ( x y )( y ) , ,,dxxx dy ( y) ,则称此微分方程为一阶齐次微分方程.dxx二.一阶齐次微分方程的基本解法:转化求解法 ―――即首先将原一阶齐次微分方程转化为变量分离方程;然后再按变量分离方程的解法去求解即可!具体地说, 第一步,作变量代换令uy,则 y ux,dyu xdu,代入原一阶齐次微分方程x dx dx du dx 第二步,进行变量 u 与 x 的左右分离得:u;(u) xdy( y ) 得: u x du(u) ;dxx dx第三步,两边求不定积分即可得其解. ...三.例题分析参见P 271.例1.又如.P 276 .1.( 4).求方程(x 3 y 3 )dx3xy 2 dy 0 的通解.解:原方程可转化为 3dyx 3y 3x 2y,作变量代换令 uy,则 y ux,dyu xdu;dxxy 2 y 2x x dxdx则原方程转化为:3(uxdu) 1 u (注意:齐次方程在进行变量代换之后,一定是可以进行变量分离的! )dx u 2紧接着就进行自变量与因变量的左右分离§4.一阶线性微分方程 一.一阶线性微分方程的定义:x du1 2uu 2dudx.最后两边作不定积分即可. ..dx u 21 2uxP x y Qx ) 的方程为一阶线性微分方程.称形如:dy( )(dx(注:因为方程的左边对未知函数y 及其导数 y ' 来说是一次线性组合的形式,所以称上述方程为"线性"方程!)( i ). 当 Q (x)0 时,则称dyP( x) y 0 为一阶线性齐次微分方程.dx( ii ) . 当 Q ( x)0 时,则称dyP(x) y Q ( x) 为一阶线性非齐次微分方程.dx二.一阶线性微分方程的解法(常数变易法是求解线性非齐次方程的基本方法)1.所谓的"常数变易法":就是为了求解某一阶线性非齐次方程,可先去求解与其所对应的齐次方程;然后在所得齐次方程的通解中, 将任意常数C代换成一个待定的未知函数u(x) 来构造生成非齐次方程的解;最后再将由此法构造生成的解, 代回原非齐次方程中去确定那个待定函数 u( x) 的表达式.―――整个这样的求解过程就称为非齐次方程的常数变易法.(可参考P278.例1)dyP( x) y Q (x) 的通解公式如下: y ep ( x )dxQ( x) ep( x) dxc] ―――请牢记!2.一阶线性微分方程:[ dxdx三.伯努利方程(注:它是一类经变量代换之后可转化为可分离变量的一阶微分方程! )1.伯努利方程的定义我们称形如:dyP( x) y Q ( x) y n ....(*)的方程为"伯努利方程"(或称" n 级伯努利方程") .dx2.伯努利方程的解法(变量代换转化法)只要令z y1n ,则dz (1 n) y1 ndy,将其代入原 n 级伯努利方程(*)可得dzdxdxn) p( x) z (1 n) Q (x) ----- 这是一个一阶线性非齐次方程 !(1 dx进而可由一阶线性非齐次方程的通解公式求出其解, 这样也就求出原伯努利方程(*)的解!3.变量代换法在求解微分方程中的运用利用变量代换(包括自变量的变量代换和因变量的变量代换),把一个微分方程转化为可分离变量方程,或转化为一个已知其求解步骤的方程,这是解微分方程的常用方法. 例1.解方程.P 282. 9.( 1).dy (x y)2dx解:可令 ux y ,则原方程转化为 dydu 1 u 2du u 2 1dudx 两边积分就可得其解. ....dxdxdxu 2 1例2.P 282.9. ( 3)解方程 xy ' y y(ln x ln y)解:可令uln x ln yln xy xy e u两边关于自变量X求导得 y xy ' eudu代入原方程得:du ,dudu dx两边积分就可得其解.....dxue u x 1e u ux 1dxdxux§6.可降阶的高阶微分方程 (本节着重掌握三种容易降阶的高阶微分方程的解法)一.y (n)f (x) 型微分方程――――这类高阶微分方程的解法很简单,只要两边积分 n 次,就可得其通解.二. y ''f ( x, y ') 型微分方程首先此方程 y '' f ( x, y ') 的类型是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含因变量y ".此类方程的解法:运用变量代换进行降阶求解.具体地,可令pdy ,则d 2 y dpdx dx 2,dx进而原方程转化为:dpf ( x, p) ―――这是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的dx解法去求解.....得其通解设为p( x, c 1 ) 又 pdy ,也即有dy ( x, c 1 )dy(x,c 1) dx ,最后只要两边再作dx dx一次积分,就可得原二阶显微分方程的解.三.y '' f ( y, y ')型微分方程首先方程 y ''f ( y, y ') 的类型也是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含自因变量x ". 此类方程的解法:也是运用变量代换进行降阶求解.具体地,可令pdy ,则 d 2y dp dp dypdp,进而原方dxdx 2dx dy dxdy程转化为pdpf ( y, p) ――这也是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的解法去dy求解...设得其通解为 p( y,c 1 ) 又 pdydy dy,也即有( y, c 1 )dx,最后只要两边再作一次积分,dx dx( y, c 1 )就可得原二阶显微分方程的解.四.例题分析P 292. 1.( 5)求解方程:y'' y ' x解:第一步:判定此方程的类型是二阶显微分方程且不显含因变量y ,即 y'' f (x, y ') 型.接着可令pdy d 2 y dp dp x p .―――这是一阶线性非齐次方程dp ,则dx 2dx,进而原方程转化为:p x .dxdxdxp 1dxx e1dxc] e x [ xe x dx c] x e2 x ce x;由一阶线性非齐次方程的通解公式知: e [ dx进而知:p dy x e2x ce x dy (e2 x ce x x)dx ,最后只要两边再作一次积得原方程的通解.....dx五.微分方程的参数方程形式的隐式通解及其在有关问题中的运用所谓"微分方程的参数方程形式的隐式通解"就是将微分方程的通解用参数方程形式来刻画.即将微分方程的自变量 x 与因变量 y 都表达成某个参数p 的函数式的形式.例如:P 292 .1.(4)求解方程:y '' 1 y '2 .解:首先判定此方程的类型是二阶显微分方程且不显变量x 和y,它同属 y '' f ( x, y ') 与 y '' f ( y, y ') 型;所以解法相对由自.以下我们来介绍微分方程的参数方程形式的隐式通解给大家!先设p dy ,则 d 2 y dp.进而原方程转化为:dp 1 p21dp dx1dp dx.dx dx2 dx dx p2 p2 x arctan p c1―――这就求得了自变量x 关于参数p的函数式;以下再来求出因变量y 关于参数 p 的函数式,进而就可得原方程的参数方程形式的隐式通解.由p dy dy pdx1 pdp ,所以y1ln(1 p2 ) c2;dx p2 2x arctan p c1从而原方程的参数方程形式的隐式通解为:1 p2 ) .y ln(1 c22注:运用同样的方法,大家可以尝试一下去求解P292 .1.( 8);(9);(10).§7.高阶线性微分方程(主要的是学习二阶线性微分方程的有关理论!)一.二阶线性微分方程的定义:称形如: y '' P( x) y ' Q (x) y f ( x) ......(*)的方程为二阶线性微分方程.(注:方程的左边对未知函数y 及其导数y ', y ''这三者来说,是一次线性组合形式!)( i ). 当f (x) 0 时,则称 y '' P(x) y ' Q ( x) y 0 为二阶线性齐次微分方程.( ii ) . 当f ( x) 0 时,则称 y '' P( x) y ' Q( x) y f ( x) 为二阶线性非齐次微分方程.二.二阶线性微分方程的解的结构1.二阶线性齐次微分方程"解的叠加原理"定理1:设y1 (x) 与 y2 (x) 都是二阶线性齐次微分方程y '' P( x) y ' Q(x) y 0 的解,则此两解的任意线性组合y A c1 y1 ( x) c2 y2 ( x) 也是此二阶线性齐次微分方程的解.―――定理1揭示了齐次方程的解所满足的一种性质.此性质常称为齐次方程"解的叠加原理".2.多个函数间的线性相关性与线性无关性的定义(参见教材P296 从略)特别地,两个函数y1 ( x) 与 y2 (x) 在区间I上线性相关y1 (x)常数,x I.y2 (x)3.二阶线性齐次微分方程的通解的结构定理2:设y1 (x) 与 y2 (x) 是二阶线性齐次微分方程y '' P(x) y ' Q ( x) y 0 的解,且 y1 (x) 与 y2 (x) 线性无关,则此两解的任意线性组合y A c1 y1 ( x) c2y2 ( x) 就是原二阶线性齐次微分方程的通解.―――定理2揭示了如何用齐次方程的两个线性无关的特解去构造生成齐次方程的通解!4.二阶线性非齐次微分方程通解的结构定理3:设y* ( x) 是二阶线性非齐次微分方程y '' P(x) y' Q (x) y f ( x) ...(*)的一个特解,且Y( x)是对应的二阶线性齐次方程y '' P( x) y 'Q( x) y 0 的通解,则y A Y( x) y* ( x) 就是原二阶线性非齐次微分方程(*)的通解.―――定理3揭示了如何用齐次方程的通解去构造非齐次方程的通解!即:非齐次通解y =齐次通解Y +非齐次特解y * .5.二阶线性非齐次微分方程解的叠加原理(P297定理4)定理4:设有二阶线性非齐次微分方程y '' P(x) y 'Q ( x) y f (x) ,(其中 f ( x) f1( x) f 2 ( x) .)而 y1 (x) 是 y '' P( x) y ' Q(x) y f1( x) 的特解,且y2 ( x) 是y '' P(x) y ' Q( x) y f 2 ( x) 的特解则 Y (x) A y1 ( x) y2 ( x) 就是原二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) 的一个特解.―――定理4揭示了如何去求非齐次方程特解的一种方法.它通常又称为非齐次方程解的叠加原理!6.定理5:设y1 (x) 与y2 (x) 是二阶线性非齐次微分方程y '' P( x) y ' Q(x)yf ( x) ...(*)的两个不相等的特解,则 Y( x) A y2 (x) y1 (x) 是对应的二阶线性齐次方程y ''P( x) y ' Q ( x) y 0 的一个非零特解.―――此定理揭示了如何用二阶线性非齐次方程的二个特解去构造生成对应的齐次方程的特解!7.例题分析P326. 1. (4) .已知y1 1, y2 x, y3 x2是某二阶线性非齐次微分方程的三个解,试求该方程的通解?分析与解答:设此二阶线性非齐次微分方程为y'' P( x) y 'Q( x) y f ( x) ....(*),则由定理3知:非齐次通解 y =齐次通解 Y +非齐次特解y *,现由题意知"非齐次特解y *"可取y1 1, y2 x, y3 x2 之中的任意一个,故以下只要求出"齐次通解Y "来即可.再由定理2知:"齐次通解Y "是两个线性无关的齐次特解的任意线性组合即:Y( x) c1 Y1( x) c2 Y2 ( x) (其中Y1 (x), Y2 (x) 是两个线性无关的齐次特解).而现在又应如何来求得两个线性无关的齐次特解呢?这可根据"定理5"来得到!由"定理5"知,可令:Y1 (x) @y2 ( x) y1 (x) x1 且 Y2 ( x) @y3 ( x) y1( x) x2 1 ,且显然两者线性无关,所以原非齐次方程的通解为y Y ( x) y1 ( x) c1 Y1 (x) c2 Y2 ( x) y1( x) c1 (x 1) c2 (x 2 1) 1.三.二阶线性非齐次微分方程的求解过程中的常数变易法与二阶线性非齐次微分方程的通解公式1.二阶线性非齐次微分方程求解过程中的"常数变易法".为了求解二阶线性非齐次微分方程y'' P( x) y ' Q( x) y f ( x) ...(1),可先求解与之对应的齐次方程;第一步:先求得对应的二阶线性齐次微分方程y'' P( x) y ' Q( x) y 0 ...(2)的两个线性无关特解y1( x) 与 y2 ( x) ,则由定理2知: y A c1 y1( x) c2 y2 ( x) ....(3)就是原二阶线性齐次微分方程(2)的通解;第二步:对齐次方程的通解(3)作常数变易,去构造生成非齐次微分方程(1)的解为 y A u( x) y1 (x) v( x)y2 (x) ...(4) (其中 u( x), v(x) 是两个待定的未知函数);第三步:接下来将(4)式代入原非齐次方程(1)并设法去求出u(x), v(x) ,这样也就求出了原非齐次方程(1)的解了!――――这就是二阶线性非齐次微分方程求解过程中的常数变易法.2.二阶线性非齐次微分方程的通解公式定理6.设y1 (x) 与 y2 (x) 是二阶线性齐次方程y '' P( x) y' Q (x) y0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) .....(2)记 Wy1'y1'有通解公式:y y2 f y1 dx y1 fy2dx.W W§8.常系数齐次线性微分方程(重点是掌握二阶线性常系数微分方程的有关理论!)一.二阶线性常系数微分方程的定义:在二阶线性微分方程:y '' P(x) y' Q (x) y 0 ....(1)之中,(i) .如果 y ', y 的系数 p(x), Q( x) 都是常数,即(1)式成为y '' py ' qy 0 (其中p, q为常数),则称其为二阶线性常系数微分方程;(ii) .如果 p,q 不全为常数,则称y '' py ' qy 0 为二阶线性变系数微分方程.二.二阶常系数齐线性微分方程y'' py ' qy 0 的解法:(如下方法通常称为"特征根公式法")第一步,写出原微分方程的特征方程r 2 pr q 0 ,并求出此方程的二个特征根r1, r2;第二步,根据特征根r1, r2的不同情形,原方程y '' py ' qy 0 的通解公式如下:(i).若特征根 r1 , r2不相等,则原方程的通解为:y c1e r1x c2 e r2x;(ii) .若特征根r1, r2为相等,则原方程的通解为:y (c1 c2 x)e r1x;(iii) .若特征根r1 ,r2为一对共轭复根 r1,2 i ,则原方程的通解为:y e x (c1 cos x c2 sin x) .三.二阶常系数齐次线性微分方程y '' py ' qy 0 的求解举例:参见教材P304--305 例1 ; 例2 ; 例3等.§9.常系数非齐次线性微分方程(重点只需掌握如下关于二阶线性常系数非齐次微分方程的通解公式!)一.关于二阶线性常系数非齐次微分方程y'' py ' qy f ( x) (其中p,q为常数)有如下结论:定理6':设y1( x) 与 y2 ( x) 是二阶线性常系数非齐次微分方程 y '' py ' qy 0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' py ' qy f (x) .....(2)记Wy1'y1'有通解公式: y y f y1dx y f y2 dx ―――请记牢!2 W 1 W――――注:此定理6'只不过是第七节中介绍的"定理6"的一个特例而已!二.常系数二阶非齐次线性微分方程求解举例例如P 313. 例2.求方程y'' 5 y ' 6y xe2x的通解.解:由定理5'应首先求对应的齐次方程y '' 5y ' 6 y 0 的通解,再运用定理5'来求原非齐次方程的通解.易知齐次方程 y'' 5 y ' 6y 0 的特征方程为 r 2 5r 6 0 ,特征根 r1 2, r2 3 .于是,齐次方程的两个线性无关的特解为y1 e2 x, y2 e3x W y1 y2 e5 x;y' y '1 1进而原非齐次方程的通解为:y y2 fy1 dx y1 f y2 dx e3x xe2 x e2 x dx e2 x xe2 x e3 x dx W W e5x e5xy e3x( xe x e x c1) e2 x ( 1x2 c2 ) d1e2x d2e3x 1 ( x2 x)e2 x.2 2三.本章杂例P 327. 7.设有可导函数( x) 满足( x)cos x 2x(t)sin tdt x 1 ,求 (x) ? 0分析与解答:这是一个"积分方程",求解"积分方程"的思路:首先我们把它转化为一个与其对应的微分方程,再来求解.现由( x)cos x x (t )sin tdt x 1 两边关于自变量X求导数得:2'(x)cos x ( x)sin x 2 (x)sin x 1 '(x)cos x ( x)sin x 1现记 y (x) ,则有 y 'cos x y sin x 1 y' y tan x secx ――这是"一阶线性非齐次微分方程".y p ( x) dxQ( x) ep( x)dxc] y etan xdxsec x etan xdxc] sin x c cosx .由通解公式得: e [ dx [ dx( x)cos x 2 x x 1 知,当x 0 时,则y (0) 1,所以c 1.又由条件(t )sin tdt综上得原方程的解为:y sin x cos x.四.综述"求解微分方程的一般程序"如下:第一步,判定方程的类型,它是一阶微分方程还是二阶微分方程?(我们知道标准求解步骤的一阶方程类型包括:①可分离变量方程;②齐次方程;③一阶线性(非)齐次方程;④贝努利方程);第二步,根据我们在本章所讲的各种方程的标准解法去求解!补充说明:如果方程类型是我们很陌生的形式,那么就首先考虑运用"变量代换法"将其转化为我们所熟悉的方程类型;然后再按上面的标准步骤去解决问题.第八章空间解析几何§1向量及其线性运算一 .一些基本概念①向量与自由向量; ②单位向量与零向量; ③向量的共线与共面; ④向量的模 , 方向角 , 以及投影等 .二 .向量的加法运算与数乘运算的定义三 . 向量的线性运算在空间直角坐标系下的表达借助于空间直角坐标系,向量间的线性运算可以转化为它们坐标之间的线性运算.§2向量的数量积向量积混合积一.两个向量的数量积r r r r 为向量r r 之间的夹角)1.数量积的定义 a b |a | |b | cos , (其中a,bAr r r r r r2.数量积与投影之间的关系――― a b | a | Pr j a b | b | Pr j b ar r3.数量积的运算规律二.两个向量的向量积r r r rr r 1.向量积的定义 a b | a | | b | sin , (其中 为向量 a,b 之间的夹角)Ar r2.向量积的模的几何意义:它表示以向量a, b 为邻边所成的平行四边形的面积. 三.三个向量的混合积r r r r r r1.混合积的定义[a,b,c] A (a b) cr r r 2.三个混合积的模的几何意义:它表示以向量a,b, c 为邻边所成的平行六面体的"有向体积".r r rV ; (i) r r rr r r1.即 [ a,b, c]当 a, b, c 呈右手系时,1;(ii) 当 a,b, c 呈左手系时,§3 曲面及其方程 一 . 曲面方程的概念r r rV 与某个三元方程 F (x, y, z) 0 的解之间能构成一一对应1.如果某曲面 S 上的点的坐标 M ( x, y, z)[ a, b, c], 则称这个三元方程F (x, y, z)0 为此曲面 S 的方程 ;2. 建立曲面方程的一般方法 : 首先在所求曲面上任取一点 M ,记其坐标为 M (x, y, z) , 然后利用该曲面的特征并将其等价地表达为点 M ( x, y, z) 的坐标应满足的条件式即可 !例如: 试求球心在点 M 0 ( x 0 , y 0 , z 0 ) , 半径为 R 的球面方程 ?uuuuuur解 : 设 M (x, y, z) 为所求球面上任意一点 , 则由 | M 0 M | Ruuuuuur(x x 0 ) 2 ( y y 0 ) 2 ( z z 0 )2即| M 0M |R所以 ( x x 0 )2( y y 0 )2 ( z z 0 )2R 2二 . 旋转曲面1. 旋转曲面的定义 ( 参见 P312)2.坐标平面内的平面曲面绕坐标轴旋转所成旋转曲面的方程及其特点:例如 : 将 yoz 坐标平面内的曲线C:f ( y, z) 0 绕Z轴旋转所成旋转曲面S z 的方程只要将平面曲线C: f ( y, z) 0 的方程中的y代换为x 2 y 2 ,即得旋转曲面 S z 的方程为 f ( x 2 y 2 , z) 0 .又如 : 将 zox 坐标平面内的曲线C:g( x, z) 0 绕X轴旋转所成旋转曲面 S x 的方程只要将平面曲线C: g ( x, z) 0的方程中的 z 代换为z 2 y 2 ,即得旋转曲面 S x 的方程为 g( x, z 2 y 2 ) 0.三. 柱面1. 柱面的定义 ( 参见 P314)2. 四种常见的柱面 :①圆柱面 x 2 y 2 2x 2 y 21; ③抛物柱面 y 22 px ; ④双曲柱面 x 2 y 21a ; ②椭圆柱面 a 2b 2 a 2 b 23. 二元方程在空间直角坐标系中的几何意义:二元方程在空间直角坐标系中的总表示一个母线平行于坐标轴的柱面. 例如 : 方程 f (x, y)0 表示的就是一个以 xoy 坐标平面内的曲线C:f (x, y) 0 为准线,母线平行于Z轴的柱面.四 . 二次曲面1. 九种二次曲面的标准方程及其大致的曲面形状2.掌握运用对旋转曲面伸缩变形来认识一般的二次曲面形状的思想方法;例如: 椭圆锥面:x 2y 2 z 2的大致形状可以按如下方式分析:首先将曲面方程中的a 改成b,易知方程:x 2y 2 z 2a 2b 2a 2a 2表示的是一个旋转曲面,且它可以由xoz 平面内的两条对称直线: x 2z 2xaz 绕Z轴旋转来生成;进而把a 2此旋转曲面沿y 轴方向伸或缩 b倍,即得椭圆锥面:x 2 y 2 z 2 的形状!aa 2b 2§ 4 空间曲线及其方程一 . 空间曲线的一般方程:即将空间曲线看成两张曲面的交线形式.设F ( x, y, z) 0 和G ( x, y, z) 0 是某两张曲面的方程,则它们的交线为F (x, y, z)G(x, y, z);x x(t)二 . 空间曲线的参数方程yy(t) ,(有关定义参见P320)z z(t)三 . 空间曲线向坐标平面的投影曲线与投影柱面(定义参见P323)四 . 二个三元方程联立消元的几何意义联立消元的几何意义:实际上就是在求这两个方程联立的方程组所表示的空间曲线向某个坐标面内的投影柱面的方程.例如:试求球面 x2y 2 z 2 9 与平面 x z 1的交线在 xoy 坐标面上的投影柱面与投影曲线的方程?解:即需求空间曲线x 2y 2 z 2 9x z1,向 xoy 坐标面内的投影柱面与投影曲线的方程.为此,只要在上述方程组中消去变量Z, 得x2y 2 (1 x)29 即为所需求的投影柱面的方程, 而上述空间曲线向 xoy坐标面的投影曲线的方程为x 2 y 2 (1 x) 2 9z 0.§ 5 平面及其方程r一 . 平面的点法式方程设某平面过一定点M 0 ( x 0 , y 0 , z 0 ) 且以 n { A, B,C}为其法向量,则所求平面的点法式方程为:A( x x 0 ) B( y y 0 ) C ( z z 0 ) 0Ax ByCz D 0r{ A, B, C} 为其法向量的某一张平面)二 . 平面的一般式方程:(应知此平面是以向量 n 三 . 平面的截距式方程:xy z 1;数值 a, b,c 分别称为该平面在X,Y,Z轴上的截距.a b c四 . 两个平面的夹角两个平面的夹角是指这两个平面的法向量之间的夹角 (当其是锐角时) ,或者是指这两个平面的法向量之间的夹角的补角 (当其是钝角时).五 . 点到面的距离公式设P 0 ( x 0 , y 0 , z 0 ) 是空间中的任意一点,记其到平面:AxBy Cz D 0的距离为d,则d| Ax 0 By 0Cz 0D |.A 2B 2C 2§ 6 空间直线及其方程一 . 空间直线的一般方程A 1 xB 1 yC 1 zD 1 0( 或称交线式方程 ) :.A 2 xB 2 yC 2 zD 2 0二 . 空间直线的点向式方程 ( 或称对称式方程 ) :xx 0 y y 0 zz0 .m np三 . 空间直线的参数式方程x x 0 mt由空间直线的点向式方程:x x 0y y 0z z 0@t ,得 yy 0nt 此即为该直线的参数式方程;mnpz 0 ptz 四 . 空间直线的两点式方程设有直线过两点M 1( x 1 , y 1 , z 1 ), M 2 ( x 2 , y 2 , z 2 ) ,则此直线的两点式方程为x x 1 y y 1 z z 1 .x 2 x 1 y 2 y 1z 2 z 1五 . 两直线的夹角两直线的夹角是指这两条直线的方向向量之间的夹角 (当其是锐角时) ,或者是指这两条直线方向向量之间的夹角的补角 (当其是钝角时).六 . 直线与平面的夹角(定义参见P333) 七 . 平面束的方程及其在解题中的运用1.所谓"平面束"就是指经过某一定直线的所有平面的全体;平面束的方程可由此定直线的方程构造而得.A 1 xB 1 yC 1 zD 1 0A 1 ,B 1,C 1 与 A 2 , B 2 , C 2 不成比例,具体地说,若设直线L的方程为A 2 xB 2 yC 2 zD 2,其中系数则以直线L为轴的平面束的方程为:( A 1 x B 1 y C 1zD 1)( A 2 x B 2 y C 2 z D 2 ) 0.(注:不同位置的平面对应于不同的参数 ,的取值.)2.平面束的概念在解题中的运用例1:参见P335例7.例2:P336.8.求过点P(3,1, 2) 且过直线L: x4 y 3z的平面方程?5 2 1x 4 y 3 z ,得直线L的一般式方程为 2x 5 y 23 0 解:由直线L的对称式:21,5y 2 z 3 0从而由平面束的概念知:可设所求平面的方程为:(2 x 5y23) ( y 2z 3) 0 .(其中 ,为待定系数!)........(1)现由点 P(3,1,2) 在此平面上,所以应有 (2 3 5 1 23) [1 2 ( 2) 3] 0,解得 /11/ 4.最后,将此值代入方程(1)即得所需求的平面方程.八.点到直线的距离公式r设 点 M 0 ( x 0 , y 0 , z 0 ) 是 直 线 L 外 一 点 , s 是 直 线 L 的 方 向 向 量 且 点 M (x, y, z) 是 直 线 L 上 任 意 一 点 , 则 点uuuuuur r M 0 ( x 0 , y 0 , z 0 ) 到直线L的距离d的计算公式为: | M M s |d0 r(注:此式只要运用向量积模的几何意义即可证明! )| s |九.直线与平面的位置关系―――线与面的位置关系有如下四种:①线在面内;②线面平行;③线面垂直;④线面斜交.r r现设直线L的方向向量为s ,平面 的法向量为 n ,则有如下结论:1.线在面内:2.线面平行:3.线面垂直:r rL s n 且A( x 0 , y 0 , z 0 ) L 但 A( x 0 , y 0 , z 0 ) ; L P r r s n , A(x 0 , y 0 , z 0 ) L 且 A(x 0, y 0 , z 0 ) ;Lr r 4.线面斜交: Lr rs Pn ;不成立s Pn 不成立;十.本章有关的一些解题技巧1.求交点类问题: 在此类问题中,运用直线的参数式方程来求解常常过程要简单一些.x 2 y3 z 42xy z6 0的交点?例如:试求直线L:1 1与平面 2x t 2解:易知直线L的参数为y t3 ,将其代入平面 2x y z 6 0 的方程,z 2t 4得2(t 2) (t 3)(2t 4)6 0,解得t1 ,进而知交点的坐标为 (1,2,2) .2.求距离类问题有时也可用直线的参数式来求解.例如:P336.13.求点P(3, 1,2) 到直线L:xy z 1 0的距离d=?2xyz 4解:直线L: x y z 1 0x y z 1 0 x y z 1 0y 2 z2x y z 4 03x 3 0x 1,x 1x1 y 2z 0 x 1 y t 2;11z t设点M为直线L上的一动点其坐标可设为M (1,t 2, t) ,uuur 2(1 3) 2(t 2 1) 2(t 2)22t 26t 9 2(t3 ) 29则有|MP |2 ,uuur2知当t 32 为最短!此时,点M的坐标M (1,t 2, t )(1, 1,3) . 时,距离 d=|MP|=3222 2――― ( 注:本题中也演示了空间直线的三种方程形式之间的互化技巧,以后可做参考!)3.已知平面上一点时求平面的方程时,点法式写方程是我们求解平面方程的基本思路.x 2 y z 1 0 和L 2: 2x y z 0例如:P336.11.求过点 A(1,2,1)而与直线L 1 :yz 1 0 x y z 都平行的平面方程?x分析:现已知平面上一点A(1,2,1) ,所以只需求得此平面的一个法向量来即可得此平面的点法式方程.ur uur r 解:记这两条直线的方向向量分别为n1, n2 ,而所以平面的法向量设为n ,ur{1,2, 1} {1, 1,1} {1, uur1,1} {1, 1,1} {0, 1, 1},则由n2, 3}, n {2,1 2r ur uur( x 1) ( y 2) ( z 1) 0.进而n n1 n2 { 1,1, 1} ,所以所求平面的方程为:。
第七章:微分方程第一类:(可分离变量型——包括一阶齐次线性微分方程)方程可以化为dy y g dx x f )()(=形式,用分离变量微分法;第二类:(非线性齐次型)方程可以化为)(x y dx dy ϕ=的形式,用u xy =替换法;一种较特殊的方程c b a y x c by ax dx dy 111++++=(*)在不同情况下可经过不同的变化来属于第一、二类微分方程1.01==c c 时,(1111x y x y x y b a yx by ax dx dy b a b a ϕ=++=++=属于第二类微分方程;2.01≠⋅c c 时,首先考虑b a ba 11=(&)成不成立;(1)不成立:根据此时的(*)并不属于第二类,可以重新构造分子、分母,来使得新形成的常数都为零,为了计算简便,引入的新参数必须与x、y 齐次,故设m X x +=、n Y y +=,这样就确保了dX dx =、dY dy =,故c b a b a c b a n m Y X cbn am bY aX y x c by ax dx dy dX dY 11111111++++++++=++++==,为了使这个式子属于第二类微分方程,则必须像 1.一样,常数都为零,即0111=++=++c b a n m c bn am (A ),因为(&)不成立,所以011≠-ab a b ,故可解得⎪⎪⎩⎪⎪⎨⎧--=--=b ba c cb b a a ac a b m a b c n 11111111,则此时就有)(1111111X Y X Y X Y ba Y X bY aX y x c by ax dx dy dX dYb a b ac b a ϕ=++=++=++++==,属于第二类微分方程;(2)成立:由(1)中叙述可知,当(&)式成立时,方程组(A )无解,则(2)中的方法不可行,故考虑整体替换,即设λ==b a b a 11,c b a b a c b a y x c y x y x c by ax dx dy 11111111)(++++=++++=λ,再令y x u b a 11+=,此时⇒=+++=⇒++=-=)(1111111u g u c u dx du u c u dx du dx dy a c b c b a λλduu g dx x f )()(=(1)(=x f ),属于属于第一类微分方程;第三类:(可降阶微分型)1.),(y x f y '=''型[y 的二阶微分方程中不含y 型],用p y ='替换法;2.),(y y f y '=''型[y 的二阶微分方程中不含x 型],用p y ='替换法;第四类:(一阶非齐次线性微分型)方程可化为)()(x Q y x p dxdy =+的形式,用背公式或者常数变易法;公式:一阶非齐次线性微分方程的通解(简称“非通”)y =e e dx x p dx x p dxx Q C ⎰⎰+⎰)()()(【背诵口诀:C+Q(X)积分含e 的P(x)积分方,再除以e 的P(x)积分方】;常数变易法:第一步:先求一阶齐次微分方程(即一阶非齐次微分方程右端为零时的方程)的通解(运用第一类微分方程的解法);第二步:令第一步求得的通解中的常数C 为u ,求出y ';第三步:将第二步得到的⎩⎨⎧='=y y 代入一阶非齐次微分方程中得到一个关系式(只引入了一个参数u ,一个关系式足矣),消掉y '、y 后(第一、二步都是为这个消掉y '、y 做准备),解得u ',再利用积分求得u ;第四步:将u 代入第二步替换后的通解中,即求得一阶非齐次微分方程的通解;一种较特殊的方程y n x Q y x p dxdy )()(=+(伯努力方程)(*)在不同情况下可经过不同的变化来属于第一、四类微分方程1.当n=1时,dx x p x Q ydy y x Q y x p dx dy )]()([)()(-=⇒=+,属于第一类微分方程;2.当n=0时,)()(x Q y x p dx dy =+,属于第四类微分方程;3.当n 1,0≠时,方程变形得)()(1x Q x p dx dy y y n n =+--,令C z dy dz dxdz dx dy y y n y n n n n +=⇒=⇒=-----1)1()1(,取y n z -=1,则有)1(n dx dz dx dy y n -=-代入y n x Q y x p dx dy )()(=+后变形得)()1()()1(x Q n z x p n dx dz -=-+,令)()()1(2x x p n p =-,)()()1(2x x Q n Q =-)()(22x z x dx dz Q p =+⇒,属于第四类微分方程;第五类:(二阶非齐次线性微分型)方程可化为)()()(x f y x Q y x p y =+'+''的形式,用背公式或者常数变易法(过程与第四类中的常数变易法类似)--------用【已知“齐通找非齐特”,或者“已知齐一特”法】;公式:对于二阶非齐次线性微分方程的通解(简称“非通”)y 等于该非齐次方程对应的齐次方程的通解加上该非齐次方程的一个特解,即非通-非特=齐通【容易证明,对于n 阶非齐次线性微分方程都有这个结论】常数变易法:第一步:已知二阶齐次微分方程(即二阶非齐次微分方程右端为零时的方程——第六类方程)的通解;第二步:令第一步求得的通解中的常数C1、C2分别为u u 21,,求出y '、y '';第三步:将第二步得到的⎪⎩⎪⎨⎧=''='=y y y 代入二阶非齐次微分方程中得到一个关系式①(两个引入参数u u 21,,一个关系式不够,还需要得到一个关系式,而且得到的这个关系式为了求出u u 21,,故为了最简单地求解出这两个参数,就不允许在y ''中出现u u ''''21,,而又因为u u 21,均不为常数,故在y '定会出现u u ''21,,而要划线部分同时成立,则必须在y '中将u u ''21,抵消掉,而y u y u y u y u y '''+'++='22112211,故令02211='+'y u y u ②,为了更方便的求解,所以需要得到更简单的①式,所以将②式在第二步中就运用,这样得到的①式为)(2211x f y u y u =''+''②,联立①②就可解得u u ''21,),再利用积分求得u u 21,;第四步:将u u 21,代入第二步替换后的通解中,即求得二阶非齐次微分方程的通解。
教学过程教学思路、主要环节、主要内容7.1 微分方程的基本概念在许多科技领域里,常会遇到这样的问题:某个函数是怎样的并不知道,但根据科技领域的普遍规律,却可以知道这个未知函数及其导数与自变量之间会满足某种关系。
下面我们先来看一个例子:例题:已知一条曲线过点(1,2),且在该直线上任意点P(x,y)处的切线斜率为2x,求这条曲线方程解答:设所求曲线的方程为y=y(x),我们根据导数的几何意义,可知y=y(x)应满足方程:我们发现这个方程中含有未知函数y的导数。
这里我们先不求解。
微分方程的概念我们把含有未知函数的导数(或微分)的方程称为微分方程。
在一个微分方程中所出现的导数的最高阶数称为微分方程的阶。
当然阶数越高的微分方程越麻烦。
从微分方程求出未知函数是什么就叫做解微分方程。
满足微分方程的函数(它要在某区间上连续)称为微分方程的解,微分方程的一般形式的解称为微分方程的一般解.满足微分方程的一个有特殊要求的解称为微分方程的一特解,这种特解通常是满足一定的附加条件的解。
通常,微分方程的一般解里,含有一些任意常数,其个数与微分方程的阶数相同,因此用来确定任意常数以从一般解得出一个特解的附加条件的个数也与微分方程的阶数相同.7.2 可分离变量的微分方程一般地,如果一个一阶微分方程能写成g(y)dy=f(x)dx (*)的形式,就是说,能把微分方程写成一端只含y的函数和dy,另一端只含x的函数和dx,那末原方程就称为可分离变量的微分方程。
那么我们将怎样解可分离变量的微分方程?通常我们采用两边积分的方法求解。
假定方程(*)中的函数g(y)和f(x)是连续的。
设是方程(*)的解,将它代入(*)中得到恒等式将上式两端积分,并由引进变量y ,得设G(y )及F(x)依次为g(y) 及f(x)的原函数,于是有G(y)=F(x)+C因此,方程(*)的解满足上式。
教学过程教学思路、主要环节、主要内容齐次方程的定义:如果一阶微分方程中的函数可写成的函数,即,则称这方程为齐次方程。