数字图像处理实例集锦
- 格式:ppt
- 大小:19.41 MB
- 文档页数:105
实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。
图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。
)<=>F(w,ϕ+θ。
)上式表明,对f(x,y)旋转一个角度θ。
对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。
F(u,v)到f(x,y)也是一样。
三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。
>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。
数字图像处理第二版夏良正著(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如条据书信、合同协议、演讲致辞、规章制度、应急预案、读后感、观后感、好词好句、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as policy letters, contract agreements, speeches, rules and regulations, emergency plans, reading feedback, observation feedback, good words and sentences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!数字图像处理第二版夏良正著数字图像处理第二版(夏良正著)数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的应用实例一.伽玛射线成像伽马射线成像的主要用途包括核医学和天文观测。
在核医学中,这种处理是将放射性同位素注射到病人体内,当这种物质衰变时放射出伽马射线,然后用伽马射线检测器收集到的放射物产生图像。
图1.6(a)显示了一幅利用伽马射线成像得到的骨骼扫描图像,这类图像用于骨骼病理(例如感染或肿瘤)定位。
图1.6(b)显示了另一种叫做“正电子放射断层”(PET)的核成像,其原理与1.2节提到的X射线断层术一样。
然而,与使用外部X射线源不同,它给病人注射放射性同位素,同位素衰变时放射出正电子。
当正电子遇上一个电子时两者湮没并放射出两束伽马射线。
这些射线被检测到后利用断层技术的基本原理创建断层图像。
示于图l. 6(b)的图像是构成病人三维再现图像序列的一幅样品。
这幅图像显示脑部和肺部各有一个肿瘤,即很容易看到的小白块。
大约在1500年前,天鹅星座中的星星发生大爆炸,产生了一团过热的稳定气云(即天鹅星座环),该气云以彩色阵列形式发光。
图1.6(c)显示了在伽马射线波段成像的天鹅星座环。
与图1.6(a)和(b)不同,该图像是利用成像物体自然辐射得到的。
最后,图1.6(d)显示了一幅来自核反应器电子管的伽马辐射图像,在图像的左下部可以看到较强的辐射区。
二.X射线成像X射线是最早用于成像的电磁辐射源之一。
最熟悉的X射线应用是医学诊断,但是,X射线还被广泛用于工业和其他领域,像天文学。
用X射线管产生用于医学和工业成像的X射线。
X射线管是带有阴极和阳极的真空管。
阴极加热释放自由电子,这些电子以很高的速度向阳极流动,当电子撞击一个原子核时,能量被释放并形成x射线辐射。
X射线的能量由另一边的阳极电压控制,而X射线的数量由施加于阴极灯丝的电流控制。
图1.7(a)显示了一幅位于X射线源和对X射线能量敏感的胶片之间的病人胸部图像。
X射线的强度受射线穿过病人时的吸收量调制,最终能量落在胶片上并使其感光,这与光使照相胶片感光是一样的。
数字图像处理技术的应用案例随着计算机科技的不断发展与应用,数字图像处理技术越来越受到人们的关注和重视,它带来的应用与发展前景也日益广泛。
数字图像处理技术主要是针对数字图像进行操作、处理、重构或改变其特征的技术,可以帮助人们更好地理解和分析图像信息,能够应用于医学、科研、安全等众多领域中,本文将重点讲述数字图像处理技术的应用案例。
一、医学领域数字图像处理技术在医学领域的应用越来越广泛,它可以用于体成像、诊断、治疗等方面。
例如,医学影像处理技术就是数字图像处理技术在医疗领域中的一个重要应用。
医学影像处理技术可以通过对数字影像进行处理和分析,提高医生诊断率,降低错误率,提高病人的治疗效果,为人们的健康保驾护航。
二、科研领域数字图像处理技术在科研领域的应用也非常广泛,例如,在材料学领域,这种技术可以用来研究材料的结构和性质,便于人们更好地了解材料的性能优劣。
此外,在天文学、地质学等领域中,数字图像处理技术也广泛应用于图像的处理、分析及识别等方面,有助于科学家更好地探索未知领域,促进科学发展。
三、安全防护领域数字图像处理技术在安全防护领域的应用非常广泛,如在视频监控中,数字图像处理技术可以用于目标追踪、行为分析、图像识别等方面,提高安全性、管理效率,降低安全风险。
此外,数字图像处理技术还可以用于身份识别和信息加密等方面,保障个人隐私和社会安全。
四、娱乐艺术领域数字图像处理技术在娱乐艺术领域的应用也非常广泛,如数字图像处理技术在影视制作领域中的应用,可以通过效果制作、特技合成等手段,实现画面特效的创新与打造,为影片增色添彩。
此外,数字图像处理技术还可以用于游戏设计、动画绘制等方面,给人们带来视觉与认知上的享受。
总之,数字图像处理技术是一个极具实用性的技术,它的应用范围广泛,可以帮助人们更好地理解并加工图像信息,提高人们处理信息的精度和效率,为各领域的发展和研究奠定坚实基础。
数字图像处理技术的发展和应用将是一个长期而且具有广阔空间的领域,我们有理由相信,在不久的将来,数字图像处理技术一定会发挥更加重要的作用。
DIP应用实例:医学图像处理应用背景医学图像处理是数字图像处理(DIP)的一个重要应用领域。
随着医学影像技术的发展,医学图像处理在疾病诊断、治疗方案制定、手术规划等方面发挥着越来越重要的作用。
通过对医学图像进行处理,可以提取出有价值的信息,辅助医生做出准确的判断和决策。
应用过程医学图像处理的应用过程可以分为以下几个步骤:1. 图像获取和预处理首先,需要获取医学图像,如X光片、CT扫描、MRI等。
这些图像可能存在噪声、伪影等问题,需要进行预处理。
预处理的目标是提高图像质量,减少噪声和伪影的影响。
预处理的方法有很多,常用的包括图像平滑、图像增强、图像去噪等。
图像平滑可以通过平均滤波、中值滤波等方法实现,减少图像中的噪声。
图像增强可以通过直方图均衡化、对比度拉伸等方法改善图像的视觉效果。
图像去噪可以通过小波去噪、自适应滤波等方法降低图像中的噪声。
2. 特征提取和分析在预处理之后,需要对图像进行特征提取和分析。
特征提取是指从图像中提取出具有代表性的特征,用于描述和区分不同的病变和组织结构。
特征提取的方法有很多,常用的包括边缘检测、纹理分析、形状分析等。
边缘检测可以通过Canny算子、Sobel算子等方法检测出图像中的边缘信息,辅助医生判断病变的位置和形状。
纹理分析可以通过灰度共生矩阵、小波纹理等方法分析图像中的纹理特征,帮助医生识别不同组织结构之间的差异。
形状分析可以通过边界跟踪、轮廓拟合等方法分析图像中的形状特征,有助于医生判断病变的形态特征。
3. 病变检测和诊断在特征提取和分析的基础上,可以进行病变检测和诊断。
病变检测是指在医学图像中自动或半自动地检测出疾病的存在和位置。
病变诊断是指根据病变的特征和分布,对疾病进行分类和诊断。
病变检测和诊断的方法有很多,常用的包括图像分割、模式识别、机器学习等。
图像分割可以将医学图像分割成不同的区域,从而定位和分析病变的位置和形状。
模式识别可以通过构建分类器,将医学图像分为正常和异常两类,辅助医生进行病变的诊断。
数字图像处理——图像⾮线性变换
1、相关了解:由于变换往往是针对具体情况的,因此没有固定的⾮线性变换公式。
有⼏种⾮线性变换公式经常遇到,如
f(B)=A+α×A×(max(A)-A)
其中α>0,这个⾮线性变换公式的图像处理效果是:图像中间灰度的对⽐度拉⼤,两端(⾼亮和过暗区)变化很⼩。
2、相关实例:⽤函数f(x)=(x)+0.005×x×(255-x)对“⾬晴⽴⼈楼”图像进⾏⾮线性变换。
①Matlab程序代码:
function nt
%by Yuanshuai Zheng UESTC 数字视觉视频技术exercise nonlinear transformation
A=imread('UESTC_rain.bmp');
figure(1);
imshow(A);%显⽰原图像
x=1:255;
y=x+0.005*x.*(255-x);
figure(2);
plot(x,y);%显⽰函数曲线图
B=double(A)+0.005*double(A).*(255-double(A));
figure(3)
imshow(uint8(B));%显⽰⾮线性处理后图像
②处理结果
⽴⼈楼原图⾮线性处理后图像
⾮线性变换函数曲线图
③结果简析和反思
从曲线可以看出,该变换是把原图像的中间灰度拉伸,低灰度值近似保持不变,压缩⾼亮灰度。
实验过程中,通过改变α的值,可以明显看出图像的变化。
数字图像处理在测绘中的应用案例概述随着技术的不断发展,数字图像处理在测绘领域的应用越来越广泛。
数字图像处理技术可以对图像进行增强、分割、配准等操作,提高测绘数据的准确性和清晰度。
本文将介绍数字图像处理在测绘中的应用案例,包括遥感影像分析、地理信息系统(GIS)建设、地形测量等方面。
遥感影像分析遥感影像分析是数字图像处理在测绘中最为常见的应用之一。
通过对遥感影像进行处理,可以提取出地表特征信息,包括植被覆盖、建筑轮廓、水域分布等。
这些信息可以作为土地利用规划、环境监测、灾害评估等方面的依据。
以城市规划为例,通过对遥感影像进行分类和分割,可以获取城市发展的空间分布情况。
通过识别出不同类型的地物,如道路、建筑物、绿地等,可以评估城市的用地结构和城市化程度。
这些信息有助于规划部门进行合理的土地使用规划,提高城市建设的效益。
地理信息系统(GIS)建设地理信息系统(GIS)是数字图像处理在测绘中的又一个重要应用领域。
在GIS系统中,数字图像处理技术可以用于地图标注、地物提取、地图配准等操作。
通过使用数字图像处理技术,可以提高地图质量,减少错误,提高工作效率。
例如,通过对高分辨率卫星影像进行配准操作,可以将不同时间或不同分辨率的地图数据融合起来,构建出更新更准确的地图。
这对于城市更新规划、物流路线选择等方面都有重要意义。
此外,通过数字图像处理技术,还可以自动提取地理元素,如河流、湖泊、道路等,快速构建地理信息数据库。
地形测量数字图像处理技术在地形测量方面也有广泛应用。
数字高程模型(DEM)是一种能够反映地表高程分布的数学模型。
通过对高分辨率卫星影像进行数字图像处理,可以提取出DEM数据,用于地形刻画和地形分析。
地形测量在地质勘探、城市规划等方面都起着重要作用。
例如,在地质勘探中,通过对地表高程数据进行分析,可以找到地下地质构造,预测矿产资源的分布。
在城市规划中,通过对地形数据的分析,可以评估区域地势特点,选择合适的区域作为建设用地,确保工程的安全性和可持续性。