21.1一元二次方程教案
- 格式:doc
- 大小:47.00 KB
- 文档页数:3
21.1 一元二次方程一、学习目标1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;2、知道一元二次方程的一般形式是20(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3、理解并会用一元二次方程一般形式中a ≠0这一条件;4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。
重难点关键 1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.知识准备1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。
一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x 的方程(k +1)x|k -1|+kx +1=0是一元二次方程,则k 的值为________.解析:由题意得⎩⎪⎨⎪⎧|k -1|=2,k +1≠0,∴⎩⎪⎨⎪⎧k =3或k =-1,k ≠-1.∴k =3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是( )A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.达标检测1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.一元二次方程的一般形式是__________.4.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.5.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________.6.方程x (4x+3)=3x+1化为一般形式为_____________,它的二次项系数是______________,一次项系数是_______________,常数项是____________________.7、(1)方程n nx x +=-72中,有一个根为2,则n 的值.(2)一元二次方程()01122=-+++m x x m 有一个解为0,试求方程210m -=的解。
课题:21.1一元二次方程一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:……(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:……(多让几名同学回答)师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.(师出示下面的板书)只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:……(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a 是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b 是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:……(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:……(让一两名学生小结)(作业:P28习题1)四、板书设计一元一次方程:3x-5=03x(x-1)=5(x+2)一元二次方程:x2-x=56 3x2-3x=5x+104x2-9=0 3x2-8x-10=0x2+3x=0 一元二次方程的一般形式:3y2-5y=7 ax2+bx+c=0,其中a是二次项系数,b是一次项系只含有一个未知数……叫做数,c是常数项一元二次方程.课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法.三、教学过程(一)基本训练,巩固旧知1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=2×3-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根)),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子.(师出示例题)例解下列一元二次方程:(1)4x2-9=0; (2)3(2x-1)2=15.(师边讲解边板书,解题过程如下所示)解:(1)原方程化成29x=4.开平方,得3x=2±,x1=32,x2=-32.(2)原方程化成2(2x-1)=5.开平方,得2x-1=5±x1=5+12,x2=-5+12.师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:……(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2=常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根.(作业:P28习题3,P42习题1)四、板书设计2x-6=0解是x=3 直接开平方法例x2-x=0解是x1=0,x2=1 第一步:化成什么2=常数;x2-36=2x 第二步:开平方,降次;第三步:解一元一次方程.。
人教版数学九年级上册教学设计21.1《一元二次方程》一. 教材分析《一元二次方程》是人民教育出版社九年级上册数学的一个重要内容,它标志着学生从简单方程的认识过渡到更复杂的一元二次方程的解决。
本节内容通过实例引入一元二次方程,使学生了解一元二次方程的定义、特点以及解法。
教材通过问题驱动,引导学生探索求解一元二次方程的方法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了简单方程的解法、不等式的性质等知识,具备了一定的数学基础。
但一元二次方程较为抽象,学生可能难以理解其定义和解法。
因此,在教学过程中,需要关注学生的认知困难,通过实例和问题引导学生理解和掌握一元二次方程。
三. 教学目标1.理解一元二次方程的定义和特点;2.学会求解一元二次方程的配方法、公式法等基本方法;3.能够应用一元二次方程解决实际问题;4.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.一元二次方程的定义和特点;2.一元二次方程的解法;3.一元二次方程在实际问题中的应用。
五. 教学方法1.实例导入:通过生活中的实际问题,引导学生认识一元二次方程;2.问题驱动:提出问题,引导学生探索求解一元二次方程的方法;3.小组合作:分组讨论,共同探索一元二次方程的解法;4.归纳总结:引导学生总结一元二次方程的解法,并应用于实际问题。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的定义、解法等知识;2.实例材料:准备生活中的实际问题,用于导入和巩固知识;3.练习题库:准备一定数量的一元二次方程练习题,用于巩固和拓展知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线与x轴的交点问题,引导学生认识一元二次方程。
通过问题驱动,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义、特点和解法。
通过实例演示和讲解,使学生理解和掌握一元二次方程的基本解法。
3.操练(10分钟)学生分组讨论,共同探索一元二次方程的解法。
《一元二次方程》教案教学内容一元二次方程的概念,一元二次方程的一般形式.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式.教学难点一元二次方程的概念.教学过程设计1.创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.2.拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2).师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是.教师应及时分析可能出现的问题(比如系数的符号问题).(2)一元二次方程的一般形式是,过程略.例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.4.巩固概念,学以致用教科书第4页:练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.5.归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.6.布置作业:教科书习题21.1复习巩固:第1,2,3题.五、目标检测设计1.下列方程哪些是关于x的一元二次方程(1);(2);(3);(4).【设计意图】考查对一元二次方程概念的理解.2.关于的方程是一元二次方程,则().A.B.C.D.【设计意图】考查的条件.3.将关于的一元二次方程化为一般形式,并指出二次项系数.【设计意图】考查化简方程的能力,及对一元二次方程一般式的掌握情况.《一元二次方程》同步试题首都师范大学附中周素裹一、选择题1.下列方程是一元二次方程的是( ).A.B.C. D.考查目的:考查一元二次方程的定义.答案:D.解析:一元二次方程是整式方程,含有最高次数项的次数为2,只有一个未知数,A是分式方程,B有两个未知数,C最高次数项为3次,故答案应选择D.2.已知关于x的方程是一元二次方程,则的取值范围是( ).A .B.C.D.考查目的:考查一元二次方程一般式中的条件.答案:B.解析:方程已经化为了一般形式,当二次项系数为时,方程为一元二次方程,本题答案为B.3.将方程化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A.3,2,-1 B.3,-2,-1 C.3,-2,1 D.-3,-2,1考查目的:考查一元二次方程一般式.答案:C.解析:根据移项法则,方程可整理为.答案应选择C.二、填空题4.把一元二次方程化成一般形式,它的二次项系数是_________;一次项系数是________,常数项是_________.考查目的:一元二次方程的一般形式.答案:1,-1,-10.解析:去括号得,移项得,所以二次项系数是1,一次项系数是-1,常数项是-10.5.已知关于的方程方程当m满足__________时,它是一元一次方程;当满足___________时,它是一元二次方程.考查目的:考查一元二次方程的概念.答案:.解析:当即时,方程是一元一次方程;当即时,方程是一元二次方程.6.是方程的一个根,那么=_________.考查目的:方程的根的意义.答案:-5.解析:是方程的一个根,根据根的定义可知,可使等式成立,将代入方程,可得,则.三、解答题7.根据题意,列出方程:有一面积为60m2的长方形,将它的一边剪去5m,另一边剪去2m,恰好变成正方形,试求正方形的边长.考查目的:根据实际问题建立数学模型,抽象出一元二次方程.答案:设正方形的边长为m,则.解析:设正方形的边长为m,是解本题的关键,它使得题中蕴含的三个未知数:正方形的边长、长方形的长和宽,得以用同一个未知数表达,这样利用面积为60 m2找到等量关系.8.关于的一元二次方程的一个根是,求的值.考查目的:根的意义,一元二次方程的条件.答案:∵方程的一个根是∴,∴,∴.当时方程二次项系数,方程不是关于的一元二次方程∴,当时方程二次项系数,方程是关于的一元二次方程∴.解析:本题有两个条件:关于的一元二次方程,一个根是,转化成数学符号语言可以得到,所以.。
21.1一元二次方程【问题情境】问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?点评:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.同步练习★1.下列方程中,关于x 的一元二次方程是( )A .(x+1)2=2(x+1)B .C .ax 2+bx+c=0D .x 2+2x=x 2﹣1 ★★2.关于x 的方程mx 2﹣3x+2=x 2是一元二次方程,则( )A .m >1B .m ≠1C .m=1D .m ≥1★★3.关于x 的一元二次方程(a 2﹣1)x 2+x ﹣2=0是一元二次方程,则a 应满足的条件为★★★4.如果关于x 的方程(m ﹣2)﹣2x ﹣12=0是关于x 的一元二次方程,那么m 的值为 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.★1.把一元二次方程(1﹣x )(2﹣x )=3﹣x 2化成一般形式ax 2+bx+c=0(a ≠0)其中a 、b 、c 分别为( )A .2、3、﹣1B .2、﹣3、﹣1C .2、﹣3、1D .2、3、1★2.下列一元二次方程中,常数项为0的是( )A .x 2+x=1B .2x 2﹣x ﹣12=0C .2(x 2﹣1)=3(x ﹣1)D .2(x 2+1)=x+2★★3.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2=1的常数项为0,则m 的值等于下列哪些数是方程0232=+-x x 的解?(1)1 ,(2),2 (3),3 (4),0【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=0、1、2、3等,发现x=1时等号成立,于是x=1是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).★★1.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B.C.﹣或D.1★★★2.关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.9★★★3.设a是方程x2+2x﹣2=0的一个实数根,则2a2+4a+2016的值为★★★4.已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为★★5.若关于x的一元二次方程(a+1)x2+x﹣a2+1=0有一个根为0,求a的值★★★6已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.★★★★7.已知:x 2+3x+1=0.求(1)x+-4;(2)x 2+.★★★★★8.已知a 是方程0120152=+-x x 的一个根,求12015201422++-a a a 的值列方程题型★★7.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x ,根据题意列方程得( )A .10(1+x )2=16.9B .10(1+2x )=16.9C .10(1﹣x )2=16.9D .10(1﹣2x )=16.9 ★★★★6.元旦节班上数学兴趣小组的同学,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少设数学兴趣小组人数为x 人,则可列方程为感谢您的阅读,祝您生活愉快。
21.1一元二次方程一、教学目标:1.通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0). 2.分清二次项及其系数、一次项及其系数与常数项等概念.3.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.4.通过例题和习题,列一元二次方程,让学生体会一元二次方程是刻画现实世界数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决问题的意识.二、重点难点:重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程及其二次项系数、一次项系数和常数项的识别.三、教学过程:(一) 复习回顾:1.什么叫方程?2.目前我们已经学习了哪些方程?①一元一次方程 ②二元一次方程(组) ③分式方程练习:根据下列问题列出关于x 的方程.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个矩形的长比宽多2,面积是100,求矩形的长x ;即: (3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 即:问题:这三个方程和之前学习过的方程类型一样吗?它们属于哪一类方程?设计意图:引导学生回顾方程概念,梳理清楚在方程这个大家族里面有很多分支,比如一元一次方程,二元一次方程(组),分式方程等.其次通过列方程实际问题得出方程(一元二次方程),设计问题引导学生对比和类比,为新知识的学习做铺垫.注重新旧知识的联系,也让学生对新概念的内涵和外延都有初步认识.(二)引出本节课课题:一元二次方程观察与思考:2425x =(2)100x x -=22100x x -=2(1)x x =-212x x x =-+222425210012x x x x x x =-==-+这三个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点: ①都是整式方程;②只含一个未知数;③未知数的最高次数是2.知识1类比归纳:一元二次方程的概念等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.练习1.下列方程是一元二次方程吗?(1) 3253x y +=- ×(2) 24x = √(3) 2211x x x --=+ × (4)224(2)x x -=+ ×方法总结:判断一个方程是否是一元二次方程的依据:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.注意:有些方程化简前含有未知数最高次数为2的项,但是化简后不存在未知数最高次数是2的项,这样的方程不是一元二次方程.设计意图:将一元二次方程的具体例子与一元一次方程作比较,引导学生观察一元二次方程在形式上的特点,找出两类方程的相同点和不同点,再类比一元一次方程的命名,学生可以很容易得出一元二次方程的命名和概念.让学生对一元二次方程的概念印象深刻,同时减少学生对新知识的陌生感,提高学习兴趣.通过练习,加深对概念的理解.活动:对这些一元二次方程进行整理,使得右边等于0.222425210012x x x x x x =-==-+222425021000310x x x x x -=--=-+=知识2:一元二次方程的一般形式:ax 2+bx +c =0(a ≠0)20(0)ax bx c a ++=≠一元二次方程一般式:思考:为什么要规定a ≠0?b 、c 可以为零吗? 设计意图:让学生对所给的一元二次方程进行整理,容易发现其一般形式,并分清二次项及其系数、一次项及其系数与常数项等概念.例 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数: 3(1)5(2)x x x -=+注:各项都应带符号.练习2.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:22(1)514(2)481(3)4(2)25(4)(32)(1)83x x x x x x x x -==+=-+=-练习3. 当m 为何值时, 方程 42(1)2750m m xmx -+++= 是关于x 的一元二次方程.练习4.方程2(24)20a x bx a --+=,在什么条件下为一元二次方程?在什么条件下为一元一次方程?解:当 a ≠2 时,是一元二次方程;当 a =2,b ≠0 时,是一元一次方程.练习5.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:问题(1) 要设计一座高2m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?解:设雕像的下部应设计为高x 米(2)::2x x x -=问题(2) 有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?解:设各角切去的正方形边长x cm(1002)(502)3600x x --=问题(3) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解:设比赛组织者应邀请x 个队参加比赛(1)472x x -=⨯ 设计意图:通过例题和习题,加深对一元二次方程概念以及二次项及其系数、一次项及其系数与常数项等概念的理解.最后通过所学方程解决实际问题,让学生体会一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.知识3:一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根. 练习6. 下列哪些数是方程的根?260--=x x-4,-3,-2,-1,0,1,2,3,4设计意图:通过复习方程根的知识,明白方程根的意义.也为解一元二次方程做铺垫,提高学生学习兴趣.(三)课堂小结:1.一元二次方程的概念是什么?2. 如何将一元二次方程转化为一般形式,一般形式包括哪些项?3. 什么是一元二次方程的根?。
第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点]通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程你能举一个方程的例子吗2.下列哪些方程是一元一次方程并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x +1=0 (4)x 2=1·3.下列哪个实数是方程2x -1=3的解并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定本题应该设哪个量为未知数(2)本题中有什么数量关系能利用这个数量关系列方程吗怎么列方程^(3)这个方程能整理为比较简单的形式吗请说出整理之后的方程. 2.教材第2页 问题2. 提出问题:(1)本题中有哪些量由这些量可以得到什么(2)比赛队伍的数量与比赛的场次有什么关系如果有5个队参赛,每个队比赛几场一共有20场比赛吗如果不是20场比赛,那么究竟比赛多少场(3)如果有x 个队参赛,一共比赛多少场呢3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: <本题需要设两个未知数吗如果可以设一个未知数,那么方程应该怎么列 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点(2)类比一元一次方程,我们可以给这一类方程取一个什么名字 (3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程. 】2.一元二次方程的一般形式是ax 2+bx +c =0(a≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.提出问题:(1)一元二次方程的一般形式有什么特点等号的左、右分别是什么 (2)为什么要限制a≠0,b ,c 可以为0吗(3)2x 2-x +1=0的一次项系数是1吗为什么3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________. ,(1)4x 2=81;(2)2x 2-1=3y ;(3)1x 2+1x =2;(4)2x 2-2x(x +7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页 例题.例3 以-2为根的一元二次方程是( ) A .x 2+2x -1=0 B .x 2-x -2=0 C .x 2+x +2=0 D .x 2+x -2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等. ;练习:1.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是________. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x 2=81;(2)(3x -2)(x +1)=8x -3. 3.教材第4页 练习第2题.4.若-4是关于x 的一元二次方程2x 2+7x -k =0的一个根,则k 的值为________. 答案:≠1;2.略;3.略;=4. 活动5 课堂小结与作业布置 >课堂小结我们学习了一元二次方程的哪些知识一元二次方程的一般形式是什么一般形式中有什么限制你能解一元二次方程吗作业布置教材第4页 习题第1~7题. 解一元二次方程21. 配方法(3课时) 第1课时 直接开平方法:理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.。
21.1 一元二次方程教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十一章“一元二次方程”21.1一元二次方程,内容包括:一元二次方程的概念及其一般式。
2.内容解析一元二次方程的概念,与得出一元一次方程的概念过程类似,教材先给出计算满足条件的正方形面积、计算满足条件的参赛队数等实际问题,用方程的思想建立数学模型,通过观察方程的特点,归纳、总结得到一元二次方程的概念。
根据一元二次方程的概念,教材给出其一般形式为:ax2+bx+c=0(a≠0),其中二次项系数、一次项系数、常数项分别为:a、b、c,需注意二次项系数不能为0的原因及系数前的符号问题。
基于以上分析,确定本节课的教学重点为:通过一元一次方程的概念,类比得出一元二次方程的概念。
二、目标和目标解析1.目标1)通过一元一次方程的概念,探索归纳一元二次方程的概念,提高学生类比、归纳、总结的能力;2)掌握一元二次方程的一般形式,正确识别一般形式中的二次项及其系数、一次项及其系数、常数项。
2.目标解析通过7年级上册的学习,我们已经掌握了一元一次方程的概念,一元一次方程的特点为:只含有一个未知数(元),未知数的次数都是1(次),且方程两边都是等式。
本节课我们根据实际问题列方程,用方程的思想建立数学模型,观察化简后的方程与一元一次方程的结构有相似的地方,它们都只含有一个未知数(元),且方程两边都是等式,但未知数的次数是2(次)。
由此学生通过观察,根据一元一次方程的概念尝试类比,归纳总结得出一元二次方程的概念。
在探索的过程中,提高学生类比、归纳、总结的能力。
一元二次方程的一般形式有两个易错点:1)忽略二次项系数≠02)判断二次项系数、一次项系数、常数项需考虑符号问题。
当二次项系数a≠0时,方程为ax2+bx+c=0(一元二次方程)。
当二次项系数 a=0时,方程为bx+c=0(一元一次方程)。
达成目标(1)的标志是:能正确判断一元二次方程。
第二十一章一元二次方程21.1 一元二次方程【知识与技能】1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项.2.会判断一个数是否是一元二次方程的根.【过程与方法】经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.【情感态度】进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.【教学重点】一元二次方程的概念及其一般表现形式.【教学难点】从实际问题中抽象出一元二次方程的模型;识别方程中的“项”及“系数”.一、知识与回顾什么是一元一次方程?如:4x+3=1什么是二元一次方程?如:3x-2y=5一、情境导入,初步认识①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.二、思考探究,获取新知由上述问题,我们可以得到x2-75x+350=0.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(1)方程各项都是整式;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.【归纳结论】1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程称为一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.想一想1.二次项的系数a为什么不能为0?2.在指出二次项系数、一次项系数和常数项时,a、b、c都一定是正数吗?谈谈你的看法.【教学说明】本环节为学生提供了多次观察、比较、归纳的活动过程,教学时应让学生进行充分的探索和交流.注重类比是帮助学生正确理解概念的有效方法.三、典例精析,掌握新知.例2将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10,移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【教学说明】以上两例均可让学生独立思考,自主完成.教师巡视,了解学生的掌握情况,最后选取几个优秀作业和有代表性问题作业通过幻灯片展示给全班同学学习与思考,加深对本节知识的理解和掌握.四、运用新知,深化理解1.下列各式中,是一元二次方程的是()A.3x2+1x=0B.ax2+bx+c=0C.(x-3)(x-2)=x2D.(3x-1)(3x+1)=32.关于x的方程(k-1)x|k|+1-2x=3是一元二次方程,则k= .3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数及常数项:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的平方,求较短一段的长x.【教学说明】让学生当堂完成上述练习,达到巩固新知目的.最后全班同学核对答案即可.【答案】1.D 2.-1 3、(1)4x2-25=0,其中二次项系数为4,一次项系数为0,常数项为-25;(2)x2-2x-100=0,其二次项系数、一次项系数和常数项分别为1,-2,-100;(3)x2-3x+1=0,其二次项系数、一次项系数和常数项分别为1,-3,1.五、师生互动,课堂小结教师提出以下问题,让学生交流,加强反思、提炼及知识归纳.(1)一元二次方程的定义,一般式及二次项系数、一次项系数和常数项;(2)一元二次方程一般形式ax2+bx+c=0(a≠0)中的括号是否可有可无?为什么?(3)通过这节课的学习你还有哪些收获?【教学说明】师生共同回顾,注重学生的交流发言..布置作业:从教材“习题21.1”中1、3题1.注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.2.教师创设情境,给出实例,学生积极主动探索,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.3.增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.4.对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.。
教学准备1. 教学目标1.1 知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
1.2过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.1.3 情感态度与价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2. 教学重点/难点2.1 教学重点一元二次方程的定义、各项系数的辨别,根的作用.2.2 教学难点根的作用的理解.3. 教学用具多媒体,教学用直尺、三角板、圆规、量角器、小黑板4. 标签教学过程一、引入新课创设问题情境,激发学生兴趣,引出本节内容活动一:[1]情境引入1.要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?2.如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 cm2,那么铁皮各角应切去多大的正方形?学生通过分析设出合适的未知数,列出方程.问题1考虑从不同角度列方程,角度一:等量关系是底面的长×宽等于底面积,设切去的正方形的边长是x cm,则有方程(100-2x)(50-2x)=3 600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是xcm,则有方程x2-75+350=0通过整理得到方程.二、新知介绍活动二:[2]要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共28场,若设邀请x个队参赛,每个队要与其他(x-1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程经过整理得到方程x2-x-56=0教师应注意:(1)学生对列方程解应用问题的步骤是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.说明:由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.活动三:[3]探索新知观察下列得到的方程:(1)x2-75x+350=0(2)x2-x-56=0(3)x(x-1)=28学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?结论:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一元二次方程的一般形式是:ax2+bx+c=0(a≠0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.思考:为什么规定a≠0强调:一元二次方程定义中的三个条件:(1)是整式方程,(2)含有一个未知数,(3)未知数的最高次数是2,三个条件缺一不可说明:主体活动,探索一元二次方程的定义及其相关概念.[4]新知应用例:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10.学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).说明:进一步巩固一元二次方程的基本概念.例猜测方程x2-x-56=0的解是什么?学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫作一元二次方程的根).三、复习总结和作业布置1.把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。