电磁感应——单棒模型
- 格式:ppt
- 大小:819.50 KB
- 文档页数:14
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
电磁感应的单棒模型例.如图:水平面上有两根相距为L=0.5m的足够长的平行光滑金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0Ω的定值电阻,导体棒ab的电阻为r=1.0Ω质量m=0.5kg,与导轨接触良好.整个装置处于方向竖直向下的匀强磁场中,磁感应器强度B=2T,问:(1)若导体棒在水平拉力作用下以8m/s的速度向右匀速直线运动,求该水平拉力多大?(2)第(1)题中若某时刻,该水平拉力突然变成3N,导体棒接下去将做什么运动?求出该导体棒的最终速度?当该导体棒速度达到最大速度10m/s时,求此时导体棒的加速度。
(3)写出导体棒最终速度v m与所加水平外力F的关系式,画出v m-F拉图像(4)若要该导体棒由静止开始做a=2m/s2的匀加速直线运动,写出所需水平拉力F拉与时间的关系式练习1:如图,两根相距L=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连。
导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T。
一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直。
棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。
求:(1)电路中的电流;(2)金属棒在x=2m处的速度;(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;(4)金属棒从x=0运动到x=2m过程中外力的平均功率。
练习2:如图所示,光滑竖直导轨顶端连接着一个电阻R=4Ω,导体棒质量m=0.8kg,电阻r=1Ω,磁感应强度B=4T,磁场、导体棒与轨道平面两两垂直,现导体棒由静止开始竖直下落,下落过程与导轨保持良好接触,导轨足够长且导轨间距L=0.5m,重力加速度取g=10m/s2,问:(1)该导体棒最终速度v m(2)当v=5m/s的时候的加速度。
电磁感应之含源电路单棒模型
1 电磁感应之含源电路单棒模型
电磁感应是电磁学的重要内容之一,它主要是指物体所受外界磁场的影响,从而产生电场和磁场现象。
进而,我们研究电磁感应,也要考虑在物体中会出现的电路单元。
而电磁感应之含源电路单棒模型就是其中一种,它由一个半圆形电磁体和一个接地电磁体构成,组成一个完整的电路单元,能够在外界磁场变化的情况下,以含源方式改变自身的电流和电位。
此外,电磁感应之含源电路单棒模型的参数还可以进行调整,可以考虑其中各项參数,如电抗、变压器、磁通等,我们可以通过调整这些参数,以满足特定的需求,如可以通过增加变压器的容量,提升电抗的稳定性。
此外,电磁感应之含源电路单棒模型还可以用于相关的实验,也可以用于工程实践当中,如火电厂、发电站等。
综上所述,电磁感应之含源电路单棒模型是电磁学研究中不可或缺的电路元件之一,具有可调的参数和可用于实践的功能,有花在工程上的重要作用。
电磁感应中单棒切割的六种典型模型
电磁感应中单棒切割是非常常见的一种切割技术,具有快速、高效、可靠、安
全等优点。
它可以用于直接切割细小的金属、木材和其他材料,而不需要任何切割液等额外材料,相比其他切割技术,它的精度要高出很多。
单棒切割的六种典型模型包括滚动模型、悬臂模型、带驱动系统的模型、螺旋
模型、穿孔式模型和偏移模型。
滚动模型是将电阻丝拉紧,用滚筒将它包裹起来,再用电阻丝产生强烈的磁场,电阻丝切割材料,可以用于切割细小件。
悬臂模型则是将电阻丝安装在悬臂上,电流通过电阻丝产生磁场,形成航空,切割金属和金属管,节省能源、提高劳动生产率。
带驱动系统的模型是将电阻管放置在回转台上,回转、加热,产生强烈的磁场,同时电阻管升温,将材料切割,具有高精度、快速等特点。
螺旋模型是将电阻丝固定在螺旋形的丝杆上,将电阻丝及其周边的材料同时升温,而且还可以实现多芯件的切割。
穿孔式模型则是将电阻丝穿进穿孔系统中,然后加热,材料会被切割,具有丝杆内无需变形的特点。
最后,偏移模型是将材料推进电阻丝磁感应区,当磁场产生张力时,将电阻丝偏移并把材料切断,具有高速切割、高精度和高质量的优点。
通过此集中切割模型,不仅可以完成金属、木材和其他材料的准确切割,还可
以实现能耗较低、节省材料的健康环保。
这种切割技术为人们的生活带来很大的便利,可以让更多的人拥有更高品质的产品和服务。
法拉第电磁感应定律——单双杆模型单双杆模型一、知识点扫描1.无力单杆(阻尼式)整个回路仅有电阻,导体棒以一定初速度垂直切割磁感线,除安培力外不受其他外力。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I= E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的减速运动,最终减速到零。
根据牛顿定律,整个过程中通过任一横截面的电荷量q=BLmv/(R+r)。
实际上也可通过牛顿定律求解电荷量:BLq=mv。
从能量守恒的角度出发,即导体棒减少的动能转化成整个回路产生的热量。
2.___单杆(发电式)整个回路仅有电阻,导体棒在恒力F作用下从静止出发垂直切割磁感线。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I=E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的加速运动,当a=0时有最大速度,v_max=FL/(B^2L^2r)。
这种情况下仍有q=BLmv/ (R+r)。
电磁感应实验是物理学中的重要实验之一,通过实验可以研究电磁感应现象。
本文将介绍三种不同的电磁感应实验,分别是不含容单杆、含容单杆和含源单杆实验。
1.不含容单杆实验在不含容单杆实验中,电、电阻和导体棒通过光滑导轨连接成回路,导体棒以一定的初速度垂直切割磁感线,除安培力外不受其他外力。
当导体棒向右运动时,切割磁感线产生感应电动势,根据右手定则知回路存在逆时针的充电电流,电两端电压逐渐增大。
而又根据左手定则知导体棒受向左的安培力,因此导体棒做减速运动,又因E=BLv可知产生的感应电动势逐渐减小,当感应电动势减小至与电两端相同时,不再向电充电,充电电流为零,导体不受安培力,做匀速直线运动。
2023年高三物理二轮常见模型与方法强化专训专练专题24 电磁感现象中的单棒模型一、高考真题1.如图1所示,光滑的平行导电轨道水平固定在桌面上,轨道间连接一可变电阻,导体杆与轨道垂直并接触良好(不计杆和轨道的电阻),整个装置处在垂直于轨道平面向上的匀强磁场中。
杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,两次运动中拉力大小与速率的关系如图2所示。
其中,第一次对应直线①,初始拉力大小为F 0,改变电阻阻值和磁感应强度大小后,第二次对应直线②,初始拉力大小为2F 0,两直线交点的纵坐标为3F 0。
若第一次和第二次运动中的磁感应强度大小之比为k 、电阻的阻值之比为m 、杆从静止开始运动相同位移的时间之比为n ,则k 、m 、n 可能为( )A .k = 2、m = 2、n = 2B .2k m n ===、C .3k m n ===、D .62k m n ===、【答案】C【详解】由题知杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,则在v = 0时分别有 01F a m =,022F a m=则第一次和第二次运动中,杆从静止开始运动相同位移的时间分别为 21112x a t =,22212x a t =则n =22F B L v a m mR=−,整理有22B L v F ma R =+则可知两次运动中F —v 图像的斜率为22B L R ,则有222121212R B k R B m =⋅=⋅故选C 。
2.如图所示,水平放置的平行光滑导轨,间距为L ,左侧接有电阻R ,导体棒AB 质量为m ,电阻不计,向右运动的初速度为0v ,匀强磁场的磁感应强度为B ,方向垂直轨道平面向下,导轨足够长且电阻不计,导体棒从开始运动至停下来,下列说法正确的是( )A .导体棒AB 内有电流通过,方向是B A → B .磁场对导体棒AB 的作用力水平向右C .通过导体棒的电荷量为mv BLD .导体棒在导轨上运动的最大距离为022mv RB L 【答案】ACD【详解】A .由右手定则可知,感应电流方向为B A →,故A 正确; B .由左手定则可知,安培力的方向水平向左,故B 错误;CD .设导体棒在导轨上运动的最大距离为x ,则q It =对导体棒由动量定理可得00F t mv −⋅∆=−安 ;F BIL =安; EI R=;ΔΦΔΔBLx E t t == 解得022 mv R x B L =;0 mv q BL =故CD 正确。
一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
高考专题:电磁感应中的单双杆模型1.常见单杆情景及解题思路单杆阻尼式单杆发电式(v0=0)含“源”电动式(v0=0)含“容”无外力充电式含“容”有外力充电式(v0=0)1.如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B。
电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。
现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD.为保持MN匀速运动,需对其施加的拉力大小为B 2L2v R2.如图所示,平行金属导轨与水平面成θ角,用导线与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面。
有一导体棒ab,质量为m,两导轨间距为L,导体棒的电阻与固定电阻R1和R2的阻值相等,都等于R,导体棒与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,有( )A.导体棒中感应电流的方向由a到bB.导体棒所受安培力的大小为B 2L2v 3RC.导体棒两端的电压为BLv3D.导体棒动能的减少量等于其重力势能的增加量与电路上产生的电热之和3.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。
一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。
在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。
将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10m/s2,sin37°=0.6)( )A.2.5 m/s,1 WB.5 m/s,1 WC.7.5 m/s,9 WD.15 m/s,9 W4.如图所示,足够长的两平行光滑水平直导轨的间距为L,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B、方向竖直向上的匀强磁场;导轨左端接有电容为C的电容器、开关S和定值电阻R;质量为m的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r。
“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。
v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。
1 ,每秒钟速度的增加量都是在变小的)2。
单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。
1 kg,空间存在磁感应强度B=0。
5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。
0 Ω,其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。
2024版新课标高中物理模型与方法电磁感应中的单导体棒模型目录一.阻尼式单导体棒模型二.发电式单导体棒模型三.无外力充电式单导体棒模型四.无外力放电式单导体棒模型五.有外力充电式单导体棒模型六.含“源”电动式模型一.阻尼式单导体棒模型【模型如图】1.电路特点:导体棒相当于电源。
当速度为v 时,电动势E =BLv2.安培力的特点:安培力为阻力,并随速度减小而减小:F 安=BIL =B 2L 2v R +r∝v3.加速度特点:加速度随速度减小而减小,a =B 2L 2vm (R +r )+μg4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止6.四个规律(1)全过程能量关系:−μmgx −Q =0−12mv 20 , 速度为v 时的能量关系−μmgx −Q =12mv 2-12mv 20电阻产生的焦耳热Q R Q=RR +r (2)瞬时加速度:a =B 2L 2vm (R +r )+μg ,(3)电荷量q =I Δt =ER +r Δt =ΔφΔt (R +r )Δt =ΔφR +r (4)动量关系:μmg Δt −BIL Δt =μmg Δt -BqL =0−mv 0(安培力的冲量F Δt =BIL Δt =BqL )安培力的冲量公式是μmg Δt −BIL Δt =0−mv 0①闭合电路欧姆定律I =ER +r ②平均感应电动势:E =BLv③位移:x =vt ④①②③④得μmg Δt +B 2L 2xR +r=mv 01(2023春·山西晋城·高三校联考期末)舰载机利用电磁阻尼减速的原理可看作如图所示的过程,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有间距为L 的水平平行金属导轨ab 、cd ,ac 间连接一电阻R ,质量为m 、电阻为r 的粗细均匀的金属杆MN 垂直于金属导轨放置,现给金属杆MN 一水平向右的初速度v 0,滑行时间t 后停下,已知金属杆MN 与平行金属导轨间的动摩擦因数为μ,MN 长为2L ,重力加速度为g ,下列说法中正确的是()A.当MN 速度为v 1时,MN 两端的电势差为U MN =2BLv 1B.当MN 速度为v 1时,MN 的加速度大小为a =μg +2B 2L 2v 1m 2R +r C.当MN 速度为v 1时,MN 的加速度大小为a =2μg +2B 2L 2v 1m R +rD.MN 在平行金属导轨上滑动的最大距离为s =mv 0-μmgt 2R +r2B 2L 2【答案】BD【详解】A .根据题意可知,MN 速度为v 1时,MN 单独切割产生的电势差2BLv 1,但由于MN 中间当电源,所以MN 两端的电势差小于感应电动势,故A 错误;BC .MN 速度为v 1时,水平方向受摩擦力、安培力,由牛顿第二定律有μmg +B 2L 2v 1R +r 2=ma解得a =μg +2B 2L 2v 1m 2R +r故B 正确,C 错误;D .MN 在平行金属导轨上滑动时,由动量定理有-μmgt -∑BIL Δt =0-mv 0又有∑I Δt =q =ΔΦR +r 2=2BLs2R +r 联立解得s =mv 0-μmgt 2R +r2B 2L 2故D 正确。
电磁感应(单棒模型)课例分析在电磁学中,“导体棒”因涉及受力分析、牛顿定律、动量定律、动量守恒定律、能量守恒定律、闭合电路的欧姆定律、电磁感应定律等主干知识,综合性强,利于考查学生的各种能力,命题形式也较为灵活,所以在强调基础、突出主干、考查能力的命题背景下,“导体棒”自然就成为电磁场综合命题中的一大热点,面对高分值的热点问题,我们可从以下几个方面进行研究复习。
导体单棒有“棒生电”或“电动棒”两种形式,但主要以“棒生电”为主。
“棒生电”指导体棒在运动过程中切割磁感应线产生感应电动势,因此“导体棒”在电路中相当于电源,与其他元件构成回路。
一、力学思路与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
应对要点在匀强磁场中匀速运动的“导体单棒”受到的安培力恒定,用平衡条件进行处理;在匀强磁场中变速运动的导体棒受的安培力也随速度(电流)变化,变速运动的瞬时速度可用牛顿第二定律和运动学公式求解,要画好受力图,抓住a=0时,速度v达最大值的特点;在解题时涉及始、末状态,还有力和作用时间的,用动量定律;涉及始、末状态,还有力和位移的,以及热量问题应尽量应用动能定律与能的转化和守恒定律解决。
二、电学思路判断产生电磁感应现象的那一部分导体(电源)→利用法拉第电磁感应定律或E=BLv求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
应对要点画等效电路图,利用闭合电路的欧姆定律、串并联电路的特点、楞次定律、左手定则解决,对待变杆问题要注意有时导体两端有电压,但没有电流流过,这类似于电源两端有电势差但没有接入电路时,电流为零;对待转动问题根据楞次定律判断方向并根据电磁感应定律计算感应电动势大小。
三、能量思路电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。