小学三年级奥数 27巧求矩形面积
- 格式:doc
- 大小:99.50 KB
- 文档页数:6
小学数学实用技巧学会计算面积与周长数学是一门既重要又有趣的学科,它帮助我们解决日常生活中的各种问题。
在小学阶段,学习数学的基础知识是非常关键的,其中计算面积与周长是一项实用技巧。
本文将介绍几种简单而有效的方法,帮助小学生快速高效地计算面积与周长。
一、矩形的面积与周长计算矩形是最基础的几何图形之一,在日常生活中随处可见。
计算矩形的面积与周长是必备的技巧。
1. 计算面积:矩形的面积等于它的长乘以宽。
假设矩形的长为L,宽为W,则矩形的面积S = L × W。
2. 计算周长:矩形的周长等于它的边长之和的两倍。
假设矩形的长为L,宽为W,则矩形的周长P = 2 × (L + W)。
二、正方形的面积与周长计算正方形是一种特殊的矩形,它具有四条边长度相等的特点。
计算正方形的面积与周长同样是小学数学的重点。
1. 计算面积:正方形的面积等于它的边长的平方。
假设正方形的边长为S,则正方形的面积A = S × S。
2. 计算周长:正方形的周长等于四条边的长度之和。
假设正方形的边长为S,则正方形的周长P = 4 × S。
三、三角形的面积与周长计算三角形也是小学数学中常见的几何图形,计算三角形的面积与周长能够帮助我们更好地理解和应用数学知识。
1. 计算面积:三角形的面积等于底边长乘以高再除以2。
假设三角形的底边长为B,高为H,则三角形的面积S = (B × H) / 2。
2. 计算周长:三角形的周长等于三边的长度之和。
假设三角形的三边长分别为a、b、c,则三角形的周长P = a + b + c。
四、圆的面积与周长计算圆是小学数学中的重要内容,它具有广泛的应用。
学习如何计算圆的面积与周长可以更好地理解圆的性质和运用。
1. 计算面积:圆的面积等于半径的平方乘以π。
假设圆的半径为R,则圆的面积A = R × R × π。
2. 计算周长:圆的周长也称为圆的周边,等于半径的两倍乘以π。
矩形面积最简单的计算方法
嘿,朋友们!今天咱来聊聊矩形面积最简单的计算方法呀!这可真是个超有趣的事儿呢!
你看啊,矩形不就像是我们生活中的一个个小盒子嘛!那计算它的面积,其实就像是搞清楚这个小盒子能装多少东西一样。
长乘以宽,这就是那个神奇的公式呀!这多简单直接呀,就好像你饿了直接去拿面包吃一样自然。
你想想,一条边是长度,另一条边是宽度,它们俩一相乘,嘿,面积就出来啦!这就像是一场奇妙的化学反应,两个元素碰到一起,就产生了全新的结果。
比如说,有一个矩形,长是 5 米,宽是 3 米,那面积不就是 5 乘以 3 等于 15 平方米嘛!这不是一下子就出来了吗?难道还有比这更简单的?
这就好像你走在路上,看到一朵漂亮的花,你一下子就知道它很美一样自然。
计算矩形面积就是这样自然而然的事情呀!我们每天都会看到各种各样的矩形物体,桌子呀、书本呀、窗户呀,要是不会算它们的面积,那多可惜呀!
而且呀,这个方法适用于所有的矩形呢,不管它是大是小,是胖是瘦,只要知道了长和宽,就能轻松算出面积。
这就像一把万能钥匙,能打开所有矩形面积的大门。
所以呀,大家一定要记住这个简单又好用的方法哦,长乘以宽,就是矩形面积的秘密武器!以后看到矩形物体,就可以在心里默默算出它的面积啦,是不是感觉超厉害的!这就是矩形面积计算的奇妙之处呀!。
辅导教案学员姓名辅导科目奥数年级课题授课时间教学目标重点、难点三年级巧求面积授课教师教学内容专题简析:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。
利用这些知识我们能解决许多有关面积的问题。
在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。
因此,敏锐的观察力和灵活的思维在解题中十分重要。
例题1把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。
这个正方形木板的面积是多少平方米?思路导航:要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。
4米3米正方形的面积:3×3=9米。
练习一1,把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?2,把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少?3,将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?例题2学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。
花坛的面积是多少平方米?思路导航:要求正方形花坛的面积,必须知道花坛的边长是多少。
根据绿篱总长是20米,可求出花坛的边长为20÷4=5米,所以花坛的面积是:5×5=25平方米。
练习二1,一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米?2,运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。
3,在公园里有两个花圃,它们的周长相等。
其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。
例题3求下面图形的面积。
(单位:厘米)1432思路导航:图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。
小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
知识要点简单求面积【例 1】 4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【分析】 1001010=⨯,3666=⨯,大正方形的边长为10厘米,小正方形的边长为6厘米,长方形的宽为:(106)22-÷=(厘米),长为:628+=(厘米)【例 2】 如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼,要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到解决问题的目的.1. 掌握巧妙的解题方法.2. 了解“等量代换”的思想.3. 培养学生灵活运用的能力.巧求面积75【分析】 阴影部分的宽是752-= (厘米),长是523-= (厘米),面积是236⨯= (平方厘米).【例 3】 一个长方形周长是80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?【分析】 小正方形的边长:80810÷=厘米,每个小正方形的面积:1010100⨯=平方厘米。
面积增减【例 4】 一块长方形铁板,长15分米,宽l2分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【分析】 如图,铁板面积比原来减少多少平方分米,就是求阴影部分的面积,用原长方形的面积减去空白部分的面积.1512(152)(122)⨯--⨯-=180130- =50(平方分米)2221512【例 5】 一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米?【分析】 808045(455)8-⨯÷+= (米).【例 6】 人民路小学操场原来长80米,宽55米,改造后长增加20米,宽减少5米.现在操场的面积比原来增加多少?【分析】 (8020)(555)8055600+⨯--⨯= (平方米).【例 7】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【分析】 根据题意,可以用下图表示增减变化的情况,从图中可以看出,原来长方形的长为(2720680)(6050)340+÷-= (米),宽为6803405052÷+= (米)。
三年级周长面积教案:快速求解多边形的周长和面积的技巧作为小学数学的重要部分,周长和面积一直是学生们需要学习和掌握的知识点。
在学习中,很多学生常常会陷入快速计算周长和面积的难题之中。
为此,我们可以通过一些技巧,来快速求解多边形的周长和面积。
本文将为大家介绍一些技巧,希望能够帮助到正在学习周长面积的三年级小学生。
一、快速求解矩形和正方形的周长矩形和正方形是我们学习六边形、五边形等多边形之前需要掌握的基本图形。
对于矩形和正方形的周长,我们可以采用如下公式进行计算:矩形周长= 2 × (长 + 宽)正方形周长= 4 × 边长例如,一个矩形的长为4cm,宽为6cm,它的周长为2 × (4 + 6) = 20cm。
一个正方形的边长为5cm,它的周长为4 × 5 = 20cm。
采用公式计算周长,既快速又准确,不仅适用于小学生,也适用于初中生、高中生甚至大学生。
二、快速求解矩形和正方形的面积对于矩形和正方形的面积,我们可以采用如下公式进行计算:矩形面积 = 长× 宽正方形面积 = 边长× 边长例如,一个矩形的长为4cm,宽为6cm,它的面积为4 × 6 = 24平方厘米。
一个正方形的边长为5cm,它的面积为5 × 5 = 25平方厘米。
同样采用公式计算面积,既快速又准确。
三、快速求解三角形的周长和面积在学习面积周长时,三角形也是我们需要掌握的一个重要图形。
对于三角形的周长,我们可以采用如下公式进行计算:三角形周长 = 边长1 + 边长2 + 边长3对于三角形的面积,我们可以采用如下公式进行计算:三角形面积 = (底边长× 高)÷ 2例如,一个三角形的三条边分别为5cm、4cm和3cm,它的周长为5 + 4 + 3 = 12cm。
如果它的底边长是4cm,高是3cm,它的面积为(4 × 3)÷ 2 = 6平方厘米。
小学奥数基础教程(三年级)- 1 - 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目.解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A —1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28—○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。
巧求面积知识要点我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼,要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到解决问题的目的.1.掌握巧妙的解题方法.2.了解“等量代换”的思想.3.培养学生灵活运用的能力.简单求面积【例 1】4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【例 2】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?75【例 3】一个长方形周长是80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?面积增减【例 4】一块长方形铁板,长15分米,宽l2分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【例 5】一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米?【例 6】人民路小学操场原来长80米,宽55米,改造后长增加20米,宽减少5米.现在操场的面积比原来增加多少?【例 7】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【例 8】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?【例 9】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?等量代换【例 10】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【例 11】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 12】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)366找规律【例 13】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?… …平移【例 14】有一块菜地长37米,宽25米,菜地中间留了1米宽的路,把菜地平均分成四块,每一块地的面积是多少?37米25米1米1米【例 15】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,红条宽都是2厘米,这条手帕白色部分的面积是多少?【例 16】(第六届小机灵杯决赛第七题)图中由若干个相同的正方形拼成,图形的周长是68厘米,这个图形的面积是多少平方厘米?【例 17】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?翻折【例 18】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?旋转【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【例 20】(第七届小机灵杯决赛第六题)图中是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是多少?第6题【例 21】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积。
小学三年级奥数27巧求矩形面积
本教程共30讲
第27讲巧用矩形面积公式
同学们都知道求正方形和长方形面积的公式:
正方形的面积=a×a(a为边长),
长方形的面积=a×b(a为长,b为宽)。
利用这两个公式可以计算出各种各样的直角多边形的面积。
例如,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。
例1右图中的每个数字分别表示所对应的线段的长度(单位:米)。
这个图形的面积等于多少平方米?
分析与解:将此图形分割成长方形有下面两种较简单的方法,图形都被分割成三个长方形。
根据这两种不同的分割方法,都可以计算出图形的的面积。
5×2+(5+3)×3+(5+3+4)×2=58(米2);
或
5×(2+3+2)+3×(2+3)+4×2=58(米2)。
上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。
实际上,我们也可以将图形“添补”成一个大长方形(见下图),然后利用大长方形与两个小长方形的面积之差,求出图形的面积。
(5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);
或
(5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。
由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演变为多个长方形的和或差,然后计算出图形的面积。
其中“分割”是最基本、最常用的方法。
例2右图为一个长50米、宽25米的标准游泳池。
它的四周铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖面积。
分析与解:游泳池面积=50×25=1250(米2)。
求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面积为
(2+25+2)×2×2+50×2×2=316(米2);
或
(2+50+2)×2×2+25×2×2=316(米2)。
求地砖的面积,我们还可以通过“挖”的方法,即从大长方形内“挖掉”一个小长方形(见右图)。
从而可得白瓷地砖面积为
(50+2+2)×(25+2+2)-50×25
=316(米2)。
例3下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。
试求各图形的面积。
解:每个小方格的面积为1厘米2。
图(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=
4(厘米2)。
图(1)的面积为
4×5=20(厘米2)。
图(2)可以看成是从长7厘米、宽6厘米的长方形中,“挖掉”4个边长为2厘米的正方形。
它的面积等于
7×6-(2×2)×4=26(厘米2)。
图(3)像个宝鼎,竖行分割,从左至右分成五块,每块面积依次为2,5,3,5,2厘米2,总面积为
2+5+3+5+2=17(厘米2)。
例3中分割成正方形、长方形的方法很多,因而具体计算面积的方法也很多。
由于图形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。
例4一个长方形的周长是22厘米。
如果它的长和宽都是整数厘米,那么这个长方形的面积(单位:厘米2)有多少种可能值?最大、最小各是多少?
解:因为长方形的周长是22厘米,所以它的长、宽之和是22÷2=11(厘米)。
考虑到长、宽都是整数厘米,只有如下情形:
所以,这个长方形的面积有五种可能值:10,18,24,28,30厘米2。
最大是30厘米2,最小是10厘米2。
练习27
1.甲、乙两块地都是长方形,且一样长。
(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?
(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?
2.求下列各图的面积。
(单位:厘米)
3.把边长为40米的正方形运动场扩为长60米、宽50米的长方形运动场。
此运动场面积扩大了多少?周长增加了多少?
4.一个正方形的面积是144米2。
如果它被分成六个相同的长方形(如左下图),那么,其中一个长方形的面积和周长各是多少?
5.右上图是用30根长4厘米的小棍摆成的图形。
这个图形的面积是多少?用这些小棍摆成的面积最大的直角多边形比这个图形的面积大多少?
6.左下图的面积是52厘米2,其中每个小方格都是一个正方形。
这个图形的外沿的周长是多少?
7.右上图由11个同样的正方形组成。
如果这个图形的周长是96厘米,那么它的面积是多少?
答案与提示练习27
1.(1)2倍;(2)3倍。
2.(1)120厘米2;(2)60厘米2。
3.1400米2,60米。
解:60×50-40×40=1400(米2),
(60+50)×2-40×4=6(米)。
4.24米2,20米。
解:144÷6=24(米2)。
因为144=12×12,所以正方形边长是12米。
一个长方形的周长=(12÷2+12÷3)×2=20(米)。
5.224厘米2;672厘米2。
提示:题图含有14个边长为1小棍的正方形;最大图形为长8小棍、宽7小棍的长方形。
6.56厘米。
解:每个小方格的面积=52÷13=4=2×2(厘米2),所以每个小方格的边长为2厘米,题图周长为56厘米。
7.176厘米2。
解:周长由24个小正方形的边长组成,小正方形边长为96÷24=4(厘米)。
所以图形面积为
4×4×11=176(厘米2)。