七年级上册全部数学知识点
- 格式:docx
- 大小:37.33 KB
- 文档页数:4
七年级上册数学知识点归纳总结一、知识点:1. 代数式:用运算符号把数与字母连起来的式子叫做代数式。
单独的一个数或一个字母也叫做代数式。
2. 单项式:只含有数与字母的积的代数式叫做单项式。
3. 系数:单项式中的数字因数叫做这个单项式的系数。
4. 次数:一个单项式中,所有字母的指数之和叫做这个单项式的次数。
5. 整式:只含有字母的积的式子叫做整式。
6. 多项式:几个单项式的和叫做多项式。
7. 项:在多项式中,每个单项式叫做多项式的项。
8. 常数项:不含字母的项叫做常数项。
9. 升幂排列与降幂排列:从左向右,指数由小到大是升幂排列;从左向右,指数由大到小是降幂排列。
10. 平行线:在同一平面内,不相交的两条直线叫做平行线。
11. 同位角、内错角、同旁内角:两条直线被第三条直线所截,如果两个角都在两直线的同侧,并且在第三条直线的两侧,那么这样的一对角叫做同旁内角;如果两个角都在两直线的同侧,并在第三条直线的同旁,那么这样的一对角叫做同位角;如果两个角都在两直线的异侧,并且都在第三条直线的同旁,那么这样的一对角叫做内错角。
12. 对顶角:两个角的两边分别对应垂直,则这两个角叫做对顶角。
13. 垂直:两条直线相交成直角时,这两条直线互相垂直。
14. 垂线与垂足:从直线外一点向直线引垂线,这点和垂足之间的线段叫做垂线段。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
15. 两点之间的所有连线中,线段最短。
简单说成:两点之间线段最短。
16. 三角形:由不在同一条直线上的三条线段首尾顺次连接得到的图形叫做三角形。
17. 三角形的边、顶点、内角:三角形是由三条边、三个顶点、三条高组成的。
三条边分别叫做三角形的三边;三个顶点分别叫做三角形的三个顶点;三个内角分别叫做三角形的三个内角;其中最大的内角叫做最大角,它也是三角形的外角。
18. 三角形的基本性质:三角形任意两边的和大于第三边;三角形三个内角和等于180°;三角形具有稳定性。
七年级上册数学所有知识点七年级上册数学知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 有理数- 有理数的定义- 有理数的分类(正有理数、负有理数、零)- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小3. 代数表达式- 代数表达式的构成- 单项式与多项式的定义- 同类项与合并同类项- 代数式简化4. 一元一次方程- 方程与方程解的概念- 一元一次方程的标准形式- 解一元一次方程的方法(移项、合并同类项、系数化为1)5. 线性不等式- 不等式的基本性质- 线性不等式的解集表示- 不等式的解法(加减法、乘除法)二、几何1. 点、线、面- 点的位置关系- 直线、射线、线段的定义与性质- 平面的基本性质2. 角- 角的定义与度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较与运算3. 三角形- 三角形的定义与分类- 三角形的性质(边长关系、内角和定理)- 等腰三角形与等边三角形的性质4. 四边形- 四边形的定义与分类- 矩形、正方形、平行四边形的性质- 四边形的内角和定理5. 圆- 圆的定义与性质- 圆的半径、直径、弦、弧、切线的概念- 圆周角与圆心角的关系三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、综合应用1. 数学问题解决策略- 问题的理解与分析- 数学建模与解决步骤- 结果的检验与评价2. 数学在生活中的应用- 数学与日常生活的联系- 数学在其他学科中的应用请注意,以上内容仅为七年级上册数学知识点的概述,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准来安排教学和学习计划。
完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。
七年级上册数学知识点大全两个相反数相加得0,一个数同0相加,仍得这个数。
加法结合律:(a+b)+c=a+(b+c)。
有理数减法法则:减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
其中,a叫做底数,n叫做指数。
有理数乘方法则:负数的偶次幂是正数,负数的奇次幂是负数。
有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
结合律:(a^m) (a^n)=a^(m+n);有理数的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的,或先去括号再算,有时也可以利用运算律进行简化运算。
有理数的运算定律:交换律、结合律、分配律同样适用于有理数的运算。
在进行有理数运算时,要灵活运用运算律进行简化运算。
在进行有理数运算时,要统一成标准的算式格式,再进行计算。
在进行有理数运算时,要正确地确定结果的符号;对一个数的几次方应先确定符号后,再计算其绝对值。
在进行有理数运算时,要熟练地运用乘法公式;在计算数值较小的算式时,要细心防止因粗心大意造成计算错误;在计算数值较大的算式时,为防止重复计算造成繁琐的计算过程,可发挥估算的作用提前作出判断。
在进行有理数运算时,要养成先定符号的习惯;在解决实际问题时,要实际审清题意进行正确解答。
在进行有理数运算时,要正确书写运算过程的格式;在比较两个有理数的大小时,要注意比较方法的正确使用。
在进行有理数运算时,要注意培养良好的学习习惯;在进行有理数运算时,要认真审题、沉着冷静地进行思考、仔细分析寻求解题途径;在解完题目之后要进行总结并经常性地反思自己的解题过程;在学习与生活中注意适当分类总结并积累一些常用的数学方法与数学思想。
地理课是我们接触到的一门新课程,学习地理课要做哪些准备?答:我们要做好三方面的准备:一是心理上的准备,克服怕学不好或不想学的思想;二是知识上的准备,了解学好地理课的基础知识;三是物质上的准备,上课时必须把课本、练习本、笔等学习用品准备齐全。
七年级上册数学知识点全部在七年级上册的数学学习中,我们学习了许多重要的数学知识点,包括基本的数学概念、运算法则、方程、函数、几何等。
以下为七年级上册数学知识点的全部总结。
一、数的基本概念和四则运算1.自然数、整数、有理数、实数和元素的含义及在数轴上的位置。
2.数的绝对值和相反数的概念及应用。
3.四则运算(加、减、乘、除)的定义、计算方法和应用。
4.分数的概念,分数的四则运算,包括约分、通分、分子分母与整体的关系等。
5.百分数、百分数的应用及百分数的四则运算。
二、代数式及其运算1.代数式和项的概念及代数式的运算(加、减、乘)。
2.利用代数式进行问题求解,如表示长度、宽度、高度、速度、力等。
3.分配律、结合律、交换律以及消去律的应用。
三、方程及其解法1.一次方程的定义,解法及掌握解方程的基本方法。
2.运用方程式解决问题,如表示纯水、浓度、混合等。
3.方程的实际应用,如计算销售额、利润等。
四、函数知识1.函数的定义及函数的自变量和因变量的概念。
2.函数的表示方法,如函数表、图表和方程式等。
3.利用函数图象解决问题,如表示面积、周长等。
五、几何基本概念1.基本几何概念,如点、直线、线段、射线、角、三角形、四边形等。
2.直角三角形、等腰三角形、等边三角形等特殊三角形及其三边关系。
3.各种四边形的性质及分类,如平行四边形、矩形、正方形、菱形等。
4.角的度数及角度的概念,以及角度大小的常用单位。
5.平面图形的投影、位似等基本概念。
六、圆的基本性质及计算1.圆的基本概念,如圆心、半径、直径、弧、弦、切线等。
2.圆的周长、面积的计算。
七、图形的坐标表示1.直角坐标系的概念及坐标点的含义。
2.坐标轴与坐标平面的表示。
3.几何图形的坐标表示,如线段、角度、多边形等。
以上为七年级上册数学知识点的全部,这些知识点是我们学习数学的基础,更深入的数学知识需要在这些知识点的基础上不断学习掌握。
七年级数学上册重点知识点:一、有理数与计算1.1 有理数的概念和分类1.有理数的概念:包括正整数、负整数、零和分数(包括正分数和负分数)四种数。
2.有理数的分类:整数:正整数、负整数和零。
分数:正分数、负分数。
小数:有限小数和无限循环小数。
1.2 四则运算1.加法:两数相加,和的符号与被加数相同。
2.减法:相当于加上减数的相反数。
3.乘法:两数相乘,积的符号为正,当两数符号不同时,积的符号为负。
4.除法:两数相除,商的符号为正。
二、整式与分式2.1 整式的概念和运算法则1.整式的概念:只包含有理数和未知数(或字母)的有限个项及其系数,并且在整个整式中,未知数的次数全是非负整数的多项式。
2.同类项的加法:将同类项的系数相加合并成一个同类项。
3.整式的乘法:将每一个乘数中的每一项分别与其他乘数中的每一项相乘,然后将所有积相加。
2.2 分式的概念和运算法则1.分式的概念:分子、分母都是整式并且分母不为零的代数式成为分式。
2.分式的加减运算:化成分母相同的分式,然后将分子相加或相减,分母不变。
3.分式的乘法:分子分母分别相乘。
4.分式的除法:用被除数乘以除数的倒数。
三、方程与方程组3.1 等式1.等式的概念:两个代数式之间用等号连接起来,成为等式。
2.方程:有未知数的等式称为方程。
3.2 一元一次方程1.一元一次方程:只含有未知数的一次项和常数项的一元一次方程称为一元一次方程,其一般形式为ax+b=0。
2.解一元一次方程:运用等式性质将方程化为x=...的形式。
3.3 一元一次方程组1.一元一次方程组:由若干个一元一次方程组成的方程组。
2.高斯消元法:根据方程的性质解方程组。
四、几何初步4.1 点与线1.点:没有长、宽、厚度的代表位置的图形。
2.线:长度无限延伸的东西,由无数个点构成。
4.2 角1.角的概念:角是由两条射线共同起点所形成的图形。
2.角的单位:角平分了单位圆周时,所对的弧称为一弧度(1 rad)。
七年级上册数学知识点总结七年级上册数学主要包括了以下知识点:整数运算、小数的加减法、小数运算、单位换算、带分数与分数的计算、比例与比例关系及图形的认识与运算等。
一、整数运算1. 整数概念:正整数、负整数、零2. 整数的加法和减法:同号相加、异号相减3. 加减混合运算:将整数计算问题转化为加法问题4. 整数的乘法和除法:同号相乘得正、异号相乘得负二、小数的加减法1. 小数的概念:有限小数、无限循环小数、无限不循环小数2. 加法:竖式计算、列竖式计算3. 减法:竖式计算、列竖式计算三、小数运算1. 小数乘法:数位对齐计算,小数点移动2. 小数除法:小数点移动,补零,竖式计算四、单位换算1. 长度单位换算:米、分米、厘米、毫米等2. 容积单位换算:立方米、立方分米、升、毫升等3. 质量单位换算:千克、克、毫克等4. 面积单位换算:平方米、平方分米、平方厘米等5. 时间单位换算:秒、分钟、小时、天等五、带分数与分数的计算1. 分数的概念:分子、分母2. 分数的加法和减法:通分、找规律3. 分数与整数的加减法:转化为带分数计算4. 分数的乘法和除法:分数相乘、分数相除的运算法则六、比例与比例关系1. 比例的概念:比例、比例常数2. 比例的性质:比例的基本性质、比例的可逆性3. 比例的应用:求比例中的一个未知数、综合运用比例解决实际问题七、图形的认识与运算1. 点、线、面的概念及特征2. 直线、射线、线段的概念及特征3. 角的概念及分类:直角、钝角、锐角等4. 三角形的分类:等边三角形、等腰三角形、普通三角形等5. 矩形、正方形、长方形的特征及性质6. 圆的认识:半径、直径、圆心等7. 长度、面积、周长的计算:直线的长度、图形的面积、图形的周长以上是七年级上册数学的主要知识点总结,希望对你有所帮助!。
第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。
三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。
4.相反数的商为-1。
5.相反数的绝对值相等。
四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
数学七年级上册知识清单一、代数部分1. 代数式:代数式是由数字、字母通过有限次的加、减、乘、除、乘方和括号等代数运算得到的数学表达式。
2. 代数式的值:将代数式中的字母用所给数值代替后计算得到的数值。
3. 代数式的化简:通过合并同类项、去括号、合并同类项等运算,使代数式简化。
4. 代数式的求值:根据代数式中字母的值,计算代数式的值。
5. 整式的加减:通过合并同类项、去括号等运算,对整式进行加减运算。
6. 乘法公式:利用平方差公式、完全平方公式等乘法公式,进行整式的乘法运算。
7. 除法运算:通过整式的除法运算,求出整式的值。
8. 合并同类项:将代数式中的同类项合并为一个项。
9. 去括号法则:利用去括号法则,将括号去除后,按照运算顺序进行运算。
10. 指数运算:利用指数运算的性质,对指数进行加减乘除等运算。
二、几何部分1. 线段:线段是两点之间的所有点的集合。
2. 角:角是两条射线之间的夹角,用度数来衡量大小。
3. 相交线:两条直线相交于一点,形成相交线。
4. 平行线:两条直线在同一平面内,且不相交,则称为平行线。
5. 三角形:由三条线段首尾顺次相接组成的图形称为三角形。
6. 全等三角形:两个三角形可以通过平移、旋转或翻转等方式完全重合,则称为全等三角形。
7. 角的平分线:角的平分线是一条射线,它将角分为两个相等的部分。
8. 垂线:当一条直线与平面内一条直线垂直时,则称为垂线。
9. 平行四边形:两组对边平行的四边形称为平行四边形。
10. 正方形:所有边相等且所有角都是直角的平行四边形称为正方形。
三、函数与方程部分1.函数:函数是一种将一个数集中的元素映射到另一个数集中的元素的关系。
2.函数的定义域:函数可以取值的范围称为定义域。
3.函数的值域:函数的输出值的范围称为值域。
4.一次函数:形如y=kx+b的一次函数,其中k和b为常数。
5.二次函数:形如y=ax²+bx+c的二次函数,其中a、b、c为常数。
提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。
所以省略“ +”的正数的符号是正号。
2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3 .0表示的意义⑴0表示“没有。
如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①H是无限不循环小数,不能写成分数形式,不是有理数。
②有小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。
2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级上册全部数学知识点数学,被誉为科学之王,是一门要求精确、逻辑性强的学科。
在我们的学习生涯中,数学一直是一个重要的科目。
因此,在初中阶段,学习数学尤为重要。
在七年级上册,有许多数学知识点需要掌握。
下面,将一一为大家进行介绍。
1.数与代数
数与代数是数学的基础,掌握好这些知识点对于后续的学习是非常重要的。
七年级上册的数与代数内容主要包括:1)自然数、整数、有理数、无理数以及实数;
2)绝对值的计算;
3)代数式的计算;
4)利用正负数法则计算代数式;
5)解一元一次方程式。
2.比例与图形变换
比例与图形变换是七年级上册数学的另一个重要知识点。
这一
部分的内容主要包括:
1)比例及其性质;
2)解决与比例有关的问题;
3)基本的几何图形及其性质;
4)相似图形及其性质;
5)相似三角形及其性质。
3.函数
函数也是七年级上册数学中需要掌握的重点。
函数的内容包括:1)函数及其图象;
2)一次函数及其图象;
3)一元一次不等式及其解法;
4)利用函数模型解决实际问题。
4.数据统计
在日常生活中,数据分析是非常常见的,因此,在学习数学的过程中,数据统计也是一个非常重要的知识点。
七年级上册的数据统计内容主要包括:
1)利用分类表、频率表和条形图描述数据;
2)利用折线图、折线区域图、点线图、直方图描述数据;
3)理解并计算中心、离散趋势度量及其意义。
5.几何运算
几何运算是数学中难点之一,需要我们对几何概念有更加深入的理解。
七年级上册的几何运算包括:
1)利用勾股定理求解三角形边长;
2)计算多边形的周长和面积;
3)利用勾股定理解决实际问题。
6.三角学
三角学是数学中一个难度较大的部分,需要进行深入的理解和掌握。
七年级上册的三角学知识包括:
1)识别三角形的分类和性质;
2)利用正弦、余弦、正切解决实际问题;
3)计算角的度数。
7.立体几何
在七年级上册的数学中,立体几何也是我们需要掌握和理解的一部分。
立体几何的内容包括:
1)立体图形的名字和性质;
2)通过相似判定两个立体图形是否全等;
3)“表面积”和“体积”的概念和计算。
总结:
七年级上册的数学知识点是我们学习数学的基础,需要我们认真学习和掌握。
除了上述所介绍的知识点外,还有其他一些知识点需要我们学习和掌握。
在学习的过程中,我们需要注重理论和实践的结合,同时,不忘记多做习题,巩固所学的知识点。