导数练习题及答案
- 格式:docx
- 大小:86.30 KB
- 文档页数:8
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。
\( g'(x) = \) ________ , \( g'(2) = \) ________ 。
4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。
\( h'(t) = \) ________ 。
三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。
6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。
四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。
8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。
答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。
求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。
以下是一些求导的练习题及其答案,适合初学者练习。
练习题1:求函数 f(x) = x^3 的导数。
解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。
因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。
练习题2:求函数 g(x) = sin(x) 的导数。
解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。
所以,g'(x) = cos(x)。
练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。
解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。
对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。
练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。
解:这里我们使用链式法则和幂函数的求导法则。
首先,设 u = x^2- 1,那么 k(x) = u^3。
u 的导数是 u' = 2x,而 u^3 的导数是3u^2。
应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。
练习题5:求函数 m(x) = e^x 的导数。
解:根据指数函数的求导法则,e^x 的导数是它自身。
所以,m'(x) = e^x。
练习题6:求函数 n(x) = ln(x) 的导数。
解:自然对数函数 ln(x) 的导数是 1/x。
因此,n'(x) = 1/x。
练习题7:求函数 p(x) = (3x - 2)^5 的导数。
解:使用链式法则和幂函数的求导法则。
一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.2.已知函数f(x)=xlnx﹣2x+a,其中a∈R.(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+…+nlnn>(n﹣1)2,其中n≥2.3.已知函数f(x)=axlnx(a≠0).(Ⅰ)求函数f(x)的单调区间和最值;(Ⅱ)若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)4.已知函数f(x)=2e x﹣x(1)求f(x)在区间[﹣1,m](m>﹣1)上的最小值;(2)求证:对时,恒有.5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知函数f(x)=ln(x+2)﹣a(x+1)(a>0).(1)求函数f(x)的单调区间;(2)若x>﹣2,证明:1﹣≤ln(x+2)≤x+1.7.已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若x>﹣1,证明:.8.已知函数(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1]内是单调减函数;(2)当x∈(0,+∞)时f(x)≥1恒成立,求实数a的取值范围.9.已知函数f(x)=(1)当a<0,x∈[1,+∞)时,判断并证明函数f(x)的单调性(2)若对于任意x∈[1,+∞),不等式f(x)>0恒成立,求实数a的取值范围.参考答案与试题解析一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性。
导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
章末检测一、选择题1.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( )A.(-1,3) B.(-1,-3)C.(-2,-3)D.(-2,3)答案B解析∵f′(x)=2x+2=0,∴x=-1.f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3).2.函数y=x4-2x2+5的单调减区间为( )A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)答案A解析y′=4x3-4x=4x(x2-1),令y′<0得x的范围为(-∞,-1)∪(0,1),故选A.3.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( )A.2B.3C.4D.5答案D解析f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,∴a=5.4.函数y=ln错误!的大致图象为()答案D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.5.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点所在象限是( )A.第一B.第二C.第三D.第四答案C解析∵y=f′(x)的图象过第一、二、三象限,故二次函数y=f(x)的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.6.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-3) B.[-错误!,错误!]C.(错误!,+∞) D.(-错误!未定义书签。
,错误!未定义书签。
)答案B解析f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0⇒-错误!≤a≤错误!未定义书签。
.7.设f(x)=x ln x,若f′(x0)=2,则x0等于( )A.e2B.ln 2C.错误!未定义书签。
D.e答案D解析f′(x)=x·(ln x)′+(x)′·lnx=1+ln x.∴f′(x0)=1+ln x0=2,∴ln x 0=1,∴x0=e.8.设函数f (x )=13x -l n x(x>0),则y =f(x )( ) A.在区间(错误!未定义书签。
,1)(1,e)内均有零点B.在区间(错误!未定义书签。
,1),(1,e )内均无零点C .在区间(错误!,1)内无零点,在区间(1,e)内有零点D .在区间(\f(1,e),1)内有零点,在区间(1,e)内无零点答案 C解析 由题意得f ′(x )=x -33x,令f ′(x )>0得x >3;令f ′(x)<0得0<x<3;f′(x )=0得x=3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x=3处有极小值1-ln 3<0;又f (1)=13>0,f (e)=e 3-1<0,f (\f(1,e))=错误!+1>0. 9.设函数f(x )=\f(s in θ,3)x 3+错误!未定义书签。
x2+t an θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A.[-2,2] B.[\r(2),3]C.[3,2] D .[错误!未定义书签。
,2]答案 D解析 ∵f ′(x )=x 2s in θ+x ·错误!未定义书签。
co s θ,∴f ′(1)=sin θ+错误!未定义书签。
c os θ=2(12sin θ+错误!未定义书签。
cos θ) =2si n(θ+错误!未定义书签。
).∵0≤θ≤错误!,∴错误!未定义书签。
≤θ+错误!≤错误!,∴错误!≤s in (θ+错误!)≤1.∴错误!≤2sin(θ+错误!)≤2.10.方程2x 3-6x 2+7=0在(0,2)内根的个数有( )A .0 B.1C.2D.3答案 B解析 令f(x )=2x 3-6x 2+7,∴f ′(x )=6x 2-12x =6x (x-2),由f′(x)>0得x>2或x<0;由f′(x)<0得0<x<2;又f(0)=7>0,f(2)=-1<0,∴方程在(0,2)内只有一实根.二、填空题11.若曲线y=kx+ln x在点(1,k)处的切线平行于x轴,则k=______.答案-1解析求导得y′=k+错误!,依题意k+1=0,所以k=-1.12.已知函数f(x)=-x3+ax在区间(-1,1)上是增函数,则实数a的取值范围是________.答案a≥3解析由题意应有f′(x)=-3x2+a≥0,在区间(-1,1)上恒成立,则a≥3x2,x∈(-1,1)恒成立,故a≥3.13.在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为________.答案(2,15)解析y′=3x2-10=2⇒x=±2,又点P在第二象限内,∴x=-2,得点P的坐标为(-2,15) 14.函数f(x)=x3+ax2+bx+a2,在x=1时有极值10,那么a,b的值分别为________.答案4,-11解析f′(x)=3x2+2ax+b,f′(1)=2a+b+3=0,f(1)=a2+a+b+1=10,错误!未定义书签。
,错误!,或错误!未定义书签。
,当a=-3时,x=1不是极值点,a,b的值分别为4,-11.三、解答题15.设错误!未定义书签。
<a<1,函数f(x)=x3-32ax2+b(-1≤x≤1)的最大值为1,最小值为-错误!,求常数a,b.解令f′(x)=3x2-3ax=0,得x1=0,x2=a.f(0)=b,f(a)=-错误!未定义书签。
+b,f(-1)=-1-错误!未定义书签。
a+b,f(1)=1-错误!未定义书签。
a+b因为错误!未定义书签。
<a<1,所以1-错误!未定义书签。
a <0,故最大值为f (0)=b =1,所以f(x)的最小值为f (-1)=-1-错误!未定义书签。
a +b =-错误!未定义书签。
a , 所以-错误!a=-错误!未定义书签。
,所以a =错误!.故a=错误!未定义书签。
,b =1.16.若函数f (x )=4x 3-a x+3在[-12,错误!未定义书签。
]上是单调函数,则实数a 的取值范围为多少?解 f ′(x )=12x 2-a ,若f (x)在[-错误!未定义书签。
,错误!未定义书签。
]上为单调增函数,则f ′(x)≥0在 [-错误!,错误!未定义书签。
]上恒成立,即12x2-a ≥0在[-错误!未定义书签。
,\f(1,2)]上恒成立,∴a ≤12x2在[-错误!未定义书签。
,错误!未定义书签。
]上恒成立,∴a≤(12x 2)m in =0. 当a =0时,f ′(x )=12x 2≥0恒成立(只有x=0时f ′(x )=0).∴a =0符合题意.若f (x)在[-错误!未定义书签。
,错误!未定义书签。
]上为单调减函数,则f ′(x )≤0,在[-\f (1,2),错误!]上恒成立,即12x2-a ≤0在[-错误!未定义书签。
,错误!未定义书签。
]上恒成立,∴a ≥12x 2在[-\f(1,2),错误!未定义书签。
]上恒成立,∴a ≥(12x 2)max =3.当a=3时,f ′(x )=12x 2-3=3(4x 2-1)≤0恒成立(且只有x =±\f (1,2)时f ′(x )=0).因此,a 的取值范围为a≤0或a ≥3.17.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πr h(元),底面的总成本为160πr 2元, 所以蓄水池的总成本为(200πrh +160πr 2)元.又根据题意200πrh +160πr2=12 000π,所以h =错误!未定义书签。
(300-4r2),从而V (r )=πr 2h =错误!未定义书签。
(300r-4r 3).因为r >0,又由h >0可得r<5错误!未定义书签。
,故函数V(r )的定义域为(0,5错误!未定义书签。
).(2)因为V (r)=错误!(300r -4r 3),故V ′(r )=\f(π,5)(300-12r 2).令V ′(r)=0,解得r1=5,r 2=-5(因为r2=-5不在定义域内,舍去).当r ∈(0,5)时,V ′(r)>0,故V (r )在(0,5)上为增函数;当r∈(5,5错误!)时,V ′(r )<0,故V (r)在(5,5错误!未定义书签。
)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h=8时,该蓄水池的体积最大.17.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为:y =错误!x3-错误!未定义书签。
x +8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解 (1)当x =40时,汽车从甲地到乙地行驶了错误!=2.5小时,要耗油(1128 000×403-错误!未定义书签。
×40+8)×2.5=17.5(升). (2)当速度为x千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h (x)升, 依题意得h (x)=(错误!x 3-错误!x +8).错误!未定义书签。
=错误!x2+错误!未定义书签。
-错误!未定义书签。
(0<x≤120),h ′(x)=错误!-错误!=错误!未定义书签。
(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h′(x )<0,h (x )是减函数;当x∈(80,120)时,h ′(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.答当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油17.5升.当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.18.已知函数f(x)=错误!x3-a ln x-错误!(a∈R,a≠0).(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调区间;(3)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.解(1)当a=3时,f(x)=错误!x3-3ln x-错误!未定义书签。