八年级数学下册第十七章勾股定理7.1勾股定理第2课时教案新人教版
- 格式:doc
- 大小:454.00 KB
- 文档页数:5
17.1勾股定理(二)一、教课目标1.会用勾股定理进行简单的计算。
2.建立数形联合的思想、分类议论思想。
二、要点、难点1.重点:勾股定理的简单计算。
2.难点:勾股定理的灵巧运用。
三、例题的企图剖析例1(增补)使学生熟习定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
让学生明确在直角三角形中,已知随意两边都能够求出第三边。
并学会利用不一样的条件转变为已知两边求第三边。
例 2(增补)让学生注意所给条件的不确立性,知道考虑问题要全面,领会分类议论思想。
例 3(增补)勾股定理的使用范围是在直角三角形中,所以注意要创建直角三角形,作高是常用的创建直角三角形的协助线做法。
让学生把前面学过的知识和新知识综合运用,提升综合能力。
四、讲堂引入复习勾股定理的文字表达;勾股定理的符号语言及变形。
学习勾股定理重在应用。
五、例习题剖析例 1(增补)在 Rt △ ABC,∠ C=90°⑴已知 a=b=5, 求 c。
⑵已知 a=1,c=2,求b。
⑶已知 c=17,b=8,求a。
⑷已知 a:b=1: 2,c=5,求a。
⑸已知 b=15,∠ A=30°,求 a, c。
剖析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和向来角边,求另向来角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
经过前三题让学生明确在直角三角形中,已知随意两边都能够求出第三边。
后两题让学生明确已知一边和两边关系,也能够求出未知边,学会见比设参的数学方法,领会由角转变为边的关系的转变思想。
例 2(增补)已知直角三角形的两边长分别为 5 和 12,求第三C边。
剖析:已知两边中较大边12 可能是直角边,也可能是斜边,所以应分两种状况分别进形计算。
让学生知道考虑问题要全面,领会分类议论思想。
例 3(增补)已知:如图,等边△ABC的边长是 6cm。
人教版八年级数学下册教案第17章 勾股定理第1课时 直角三角形三边的关系教学目标知识与技能:体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题;过程与方法:在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力;情感态度与价值观:通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
教学分析重点:探索和验证勾股定理过程。
难点:通过面积计算探索勾股定理。
关键:关注性质的推导,主动探索,在实践中获得结论,并能正确地用语言表述性质。
教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为 2cm ,正方形Q 的面积为 2cm ,正方形R 的面积为 2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢? (你打算用什么方法来研究?共同讨论方法后再确立研究方向)(图中每一小方格表示21cm )⑴正方形P 的面积为 2cm ,正方形Q 的面积为 2cm ,正方形R 的面积为 2cm 。
⑵正方形P 、Q 、R 的面积之间的关系是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
第十七章勾股定理教材简析本章的内容包括:勾股定理、勾股定理的逆定理.本章主要研究并揭示直角三角形三边之间的关系的勾股定理与勾股定理的逆定理.勾股定理是一个著名的几何定理,在西方也被称为毕达哥斯拉定理.勾股定理有几百种证明方法,本章主要介绍的是我国古代数学家赵爽的证明方法,这种方法利用直角三角形的面积与正方形的面积关系,数形结合,直观、简洁.勾股定理在数学的发展和现实世界中有着广泛的作用.本章是直角三角形相关知识的延续,同时也让学生进一步认识无理数,充分体现了数学知识的紧密相关性、连续性.在中考中,主要考查勾股定理及三角形判别条件的应用,常与三角形的其他知识结合考查.教学指导【本章重点】勾股定理,勾股定理的逆定理.【本章难点】勾股定理的证明,勾股定理的应用.【本章思想方法】1.体会转化思想,如:应用勾股定理将实际问题转化成数学模型,从而构造直角三角形求解.2.体会和掌握方程思想,如:利用勾股定理求线段长时,往往需要列方程求解.课时计划17.1勾股定理3课时17.2勾股定理的逆定理1课时17.1勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A 的面积=4;B 的面积=9;C 的面积=52-4×12×(2×3)=13;所以A +B =C .A ′=9;B ′=25;C ′=82-4×12×(5×3)=34;所以A ′+B ′=C ′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图”证明勾股定理.解:朱实=12ab ;黄实=(a -b )2;正方形的面积=4朱实+黄实=(a -b )2+12ab ×4=a 2+b 2-2ab +2ab =a 2+b 2.又正方形的面积=c 2,所以a 2+b 2=c 2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再作三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.图1图2【互动探索】(引发学生思考)从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.又∵左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4,∴a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.【例2】 已知在Rt △ABC 中,∠C =90°,a 、b 为两直角边,c 为斜边. (1)若a =3,b =4,则c 2=____,c =____;(2)若a=6,b=8,则c2=____,c=____;(3)若c=41,a=9,则b=____;(4)若c=17,b=8,则a=____.【互动探索】(引发学生思考)根据勾股定理求解.【分析】(1)c2=a2+b2=32+42=25,则c=5.(2) c2=a2+b2=62+82=100,则c=10.(3) 因为c2=a2+b2,所以b=c2-a2=412-92=40.(4)因为c2=a2+b2,所以a=c2-b2=172-82=15.【答案】(1)255(2)10010(3)40(4)15【互动总结】(学生总结,老师点评)本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.a2+b2=c2的常用变形b=c2-a2,a=c2-b2.活动2巩固练习(学生独学)1.在△ABC中,∠C=90°.若a=5,b=12,则c=13;若c=41,a=9,则b=40.2.等腰△ABC的腰长AB=10 cm,底BC为16 cm,则底边上的高为6_cm,面积为48_cm2.3.已知在△ABC中,∠C=90°,BC=a,AC=b,AB=c.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.解:(1)根据勾股定理,得c2=a2+b2=12+22=5.∵c>0,∴c= 5.(2)根据勾股定理,得b2=c2-a2=172-152=64.∵b>0,∴b=8.活动3拓展延伸(学生对学)【例3】在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC 的周长.【互动探索】应考虑高AD在△ABC内和△ABC外的两种情形.【解答】当高AD在△ABC内部时,如图1.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得,BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1 图2【互动总结】(学生总结,老师点评)题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC 外的情形.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.练习设计请完成本课时对应练习!第2课时勾股定理的应用教学目标一、基本目标【知识与技能】能运用勾股定理解决有关直角三角形的简单实际问题.【过程与方法】经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.【情感态度与价值观】培养合情推理能力,体会数形结合的思维方法,激发学习热情.二、重难点目标【教学重点】勾股定理的简单应用.【教学难点】运用勾股定理建立直角三角形模型解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P25的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.在△ABC中,∠C=90°.若BC=6,AB=10,则AC=8.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,已知在△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,CD⊥AB于点D,求CD的长.【互动探索】(引发学生思考)观察图形:“多直角三角形嵌套”图形→已知边长,求高CD →利用等面积法求解.【解答】∵△ABC 是直角三角形,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC =AB 2-BC 2=4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm).【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【例2】 如图,侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m ,你能帮小王算出敌方汽车的速度吗?【互动探索】(引发学生思考)要求敌方汽车的速度,需要算出BC 的长.在Rt △ABC 中利用勾股定理即可求得BC .【解答】由勾股定理,得AB 2=BC 2+AC 2,即5002=BC 2+4002,所以BC =300 m. 故敌方汽车10 s 行驶了300 m ,所以它1 h 行驶的距离为300×6×60=108 000(m), 即敌方汽车的速度为108 km/h.【互动总结】(学生总结,老师点评)用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2 B .130 cm 2 C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm 、12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,求该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m). 即该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例3】如图1,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有绳子从D 出发,沿长方体表面到达B ′点,问绳子最短是多少厘米?图1 图2图3【互动探索】可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.【解答】如图2,由题易知,DD′=3 cm,B′D′=2×2=4(cm).在Rt△DD′B′中,由勾股定理,得B′D2=DD′2+B′D′2=32+42=25;如图3,由题易知,B′C′=2 cm,C′D=2+3=5 (cm).在Rt△DC′B′中,由勾股定理,得B′D2=B′C′2+C′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5 cm.【互动总结】(学生总结,老师点评)此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理的简单运用:(1)由直角三角形的任意两边的长度,可以应用勾股定理求出第三边的长度.(2) 用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.练习设计请完成本课时对应练习!第3课时利用勾股定理表示无理数教学目标一、基本目标【知识与技能】进一步熟悉勾股定理的运用,掌握用勾股定理表示无理数的方法.【过程与方法】通过探究用勾股定理表示无理数的过程,锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力.【情感态度与价值观】让学生充分体验到了数学思想的魅力和知识创新的乐趣,体会数形结合思想的运用.二、重难点目标【教学重点】探究用勾股定理表示无理数的方法.【教学难点】会用勾股定理表示无理数.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P26~P27的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.教材P27,利用勾股定理在数轴上画出表示1,2,3,4,…的点.3.13的线段是直角边为正整数3,2的直角三角形的斜边.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1C.5-1D. 5【互动探索】(引发学生思考)先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【分析】图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A所表示的数为5-1.故选C.【答案】C【互动总结】(学生总结,老师点评)本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.活动2巩固练习(学生独学)1.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB ⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= 2 ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;….依此继续,得OP2018=2019,OP n=n+1(n为自然数,且n>0).3.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:面积为8平方单位的正方形的边长为8,8是直角边长为2,2的两个直角三角形的斜边长,画图如下:活动3拓展延伸(学生对学)【例2】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【互动探索】(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)先找出几个能构成勾股数的无理数,再画出来即可,如画一个边长2,22,10的三角形;(3)画一个边长为10的正方形即可.【解答】(1)直角三角形的三边分别为3,4,5 ,如图1.(2)直角三角形的三边分别为2,22,10,如图2.(3)画一个边长为10的正方形,如图3.【互动总结】(学生总结,老师点评)本题考查了格点三角形的画法,需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)利用勾股定理表示无理数.练习设计请完成本课时对应练习!17.2勾股定理的逆定理教学目标一、基本目标【知识与技能】掌握勾股定理的逆定理,并能进行简单运用;理解互逆命题的有关概念.【过程与方法】经历探索直角三角形的判定条件过程,理解勾股定理的逆定理.【情感态度与价值观】激发学生解决问题的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值.二、重难点目标【教学重点】掌握勾股定理的逆定理,勾股数,理解互逆命题的有关概念.【教学难点】利用勾股定理的逆定理解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P33的内容,完成下面练习.【3 min反馈】1.(1)勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2;那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.4.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.【互动探索】(引发学生思考)分别已知三角形的边和角,如何判定一个三角形是直角三角形呢?【解答】(1)在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形.(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.【互动总结】(学生总结,老师点评)判断直角三角形的常用方法有两种:(1)两锐角互余的三角形是直角三角形(即有一个角等于90°的三角形是直角三角形);(2)利用勾股定理的逆定理判断三角形的三边是否满足a2+b2=c2(c为最长边).【例2】写出命题“等腰三角形两腰上的高线长相等”的逆命题,判断这个命题的真假,并说明理由.【互动探索】(引发学生思考)原命题的题设为等腰三角形,结论为腰上的高相等,然后交换题设与结论得到其逆命题;可根据三角形面积公式判断此命题的真假.【解答】命题“等腰三角形两腰上的高线长相等”的逆命题是两边上的高相等的三角形为等腰三角形,此逆命题为真命题.如图,在△ABC中,CD⊥AB,BE⊥AC,且CD=BE.∵BC=BC,∴△CBD≌△BCE(HL),∴∠DBC=∠ECB,∴△ABC为等腰三角形.【互动总结】(学生总结,老师点评)两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.【例3】某港口位于东西方向的海岸线上.“远航”号“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【互动探索】(引发学生思考)根据“路程=速度×时间”分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【解答】根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知,∠QPS=45°,∴∠SPR=45°,即“海天”号沿西北方向航行.【互动总结】(学生总结,老师点评)本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.活动2巩固练习(学生独学)1.以下列各组数为边长,能组成直角三角形的是(C)A.5,6,7B.10,8,4C.7,25,24D.9,17,152.下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)同旁内角相等,两直线平行;(2)如果两个角是直角,那么这两个角相等.解:(1)“同旁内角相等,两直线平行”的逆命题是两直线平行,同旁内角相等,逆命题不成立.(2)“如果两个角是直角,那么这两个角相等”的逆命题是如果两个角相等,那么两个角是直角,逆命题不成立.3.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1=(m2+1)2,且c2=(m2+1)2,所以a2+b2=c2,即a、b、c是勾股数.m=2时,勾股数为4、3、5;m=3时,勾股数为6、8、10;m=4时,勾股数为8、15、17.4.如图,已知在四边形ABCD中,∠A=90°,AB=2 cm,AD= 5 cm,CD=5 cm,BC=4 cm,求四边形ABCD的面积.解:如图,连结BD.∵∠A=90°,AB=2 cm,AD= 5 cm,∴根据勾股定理,得BD=3 cm.又∵CD=5 cm,BC=4 cm,∴CD2=BC2+BD2,∴△BCD是直角三角形,∴∠CBD=90°,∴S四边形ABCD=S△ABD+S△BCD=12AB·AD+12BC·BD=12×2×5+12×4×3=()5+6cm2.活动3 拓展延伸(学生对学)【例4】在正方形ABCD 中,F 是CD 的中点,E 为BC 上一点,且CE =14CB ,试判断AF 与EF 的位置关系,并说明理由.【互动探索】观察图形,猜测AF ⊥EF .证明△AEF 为直角三角形可得AF ⊥EF .【解答】AF ⊥EF .理由如下:设正方形的边长为4a .∵F 是CD 的中点,CE =14CB , ∴EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,由勾股定理,得AE 2=AB 2+BE 2=16a 2+9a 2=25a 2.在Rt △CEF 中,由勾股定理,得EF 2=CE 2+CF 2=a 2+4a 2=5a 2.在Rt △ADF 中,由勾股定理,得AF 2=AD 2+DF 2=16a 2+4a 2=20a 2.∴AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.【互动总结】(学生总结,老师点评)利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.环节3课堂小结,当堂达标(学生总结,老师点评)1.勾股定理的逆定理:如果三角形的三边长a、b、c满足a2-b2=c2,那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.练习设计请完成本课时对应练习!。
最新人教版八年级数学第17章勾股定理教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新人教版八年级数学第17章勾股定理教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新人教版八年级数学第17章勾股定理教案的全部内容。
第十七章勾股定理教案课题:17。
1勾股定理(1) 课型:新授课【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.2.培养在实际生活中发现问题总结规律的意识和能力.【学习重点】:勾股定理的内容及证明。
【学习难点】:勾股定理的证明。
【学习过程】一、课前预习1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、(1)、同学们画一个直角边为3cm 和4cm 的直角△ABC ,用 刻度尺量出AB 的长。
(2)、再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长问题:你是否发现+与,+和的关系,即+ ,+ , 二、自主学习 思考:(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B,C 的面积之间有什么关系吗?图1-2中的呢? (3)你能发现图1-1中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1。
6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c,那么__________________ _____________________________________________________________________。
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
17.1勾股定理(第二课时)【教学目标】1.进一步理解巩固勾股定理联系二次根式的计算2.运用勾股定理进行简单的计算【重点难点】重点:勾股定理的简单应用难点:勾股定理的应用【教学过程设计】【活动一】(一)介绍勾股定理与第一次数学危机:“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。
但根2很快就引起了数学思想的大革命。
科学史上把这件事称为“第一次数学危机”,也让数学向前大大发展了一步。
引入斜边长为无理数时勾股定理的应用。
【活动二】讲解例1一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?分析:可以看出,木板横着和竖着都不能通过,只能试着斜着通过师生活动:教师和学生共同完成练习:一个门框的尺寸如图所示,一块长4m,宽3m的薄木板(能或不能)从门框内通过.1m2m师生活动:学生板演,教师进行点评【活动三】例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移动0.5m吗?师生活动:学生先思考如何解决这个问题教师讲解例题规范解题步骤【活动四】巩固提高完成书上26页练习题练习1 如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点,测得BC=60m,AC=20m,求A,B两点间的距离(结果取整数)2.在平面直角坐标系中有两点A(5,0)和B(0,4),求这两点之间的距离课堂小结1.本节课主要学习了哪些内容2.勾股定理如何应用到简单问题的解决中?作业1.复习本节课的内容2.完成练习册上的相关内容3.预习下节课内容板书设计课后反思。
17.2勾股定理的逆定理【教学目标】知识与技能:1.理解原命题、逆命题、逆定理的概念及关系.2.会用勾股定理的逆定理判断直角三角形.过程与方法:经历探索勾股定理的逆定理的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.情感态度与价值观:通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.【重点难点】重点:理解并掌握勾股定理的逆定理,并会应用.难点:勾股定理的逆定理的证明.【教学过程】一、创设情境,导入新课小明做了一个长为40 cm,宽为30 cm的长方形模型,高兴地交给了老师,老师接过小明的模型,用刻度尺度量了模型的长宽所在的对角线,量得对角线的长为56 cm,然后老师指着模型对小明说:“这个角不是直角,你做的模型不合格.”小明不高兴地问老师:“老师,只通过直尺度量就能判断一个角不是直角吗?”同学们有这样的疑问吗?老师通过直尺度量判断直角有没有根据?带着这些问题,我们学习本节知识.二、探究归纳活动1:互逆命题、互逆定理1.问题1:下面几组数分别是一个三角形的边长a、b、c(单位:cm).①3、4、5;②4、7、9;③6、8、10.(1)这三组数都满足a2+b2=c2吗?(2)尺规作图:分别以每组数为三边长作出三角形.(3)用量角器量一量,它们是直角三角形吗?提示:(1)①③满足a2+b2=c2,②不满足(2)略(3)①③是直角三角形,②不是直角三角形.2.思考:根据上面的几个例子,你能提出一个数学命题吗?3.归纳:如果一个三角形的三边长a,b,c满足_________________,那么这个三角形是___________.答案:a2+b2=c2直角三角形4.问题2:阅读,命题1 : 如果一个三角形是直角三角形,两直角边长为a,b,斜边长为c,那么a2+b2=c2.命题2 :如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(1)观察命题2与命题1,你有什么发现?发现:两个命题的______、______正好相反,命题1的____是命题2的______;命题1的______是命题2的______.我们把像这样的两个命题叫做________.如果把其中一个叫______,那么另一个叫做它的________.(2)你能举出互逆命题的例子吗?(3)如果原命题正确,那么逆命题也正确吗?举例说明.提示:(1)题设结论题设结论结论题设互逆命题原命题逆命题(2)略(3)不一定略5.思考:一个三角形各边长数量应满足怎样的关系时,这个三角形才是直角三角形呢?提示:三角形的三边长a,b,c满足a2+b2=c2时,这个三角形是直角三角形.活动2:1.问题:已知△ABC中,BC=3,AC=4,AB=5,求证△ABC是直角三角形.证明:如图,画一个Rt△A′B′C′,使B′C′=______,A′C′= ______,∠C′= ______°.∵BC=3,AC=4,∴BC=______=3 ,AC=______=4,由勾股定理,得A′B′2=B′C′2+A′C′2=______+______=______,∴A′B′=______,∵AB=5,∴AB=______ ,在△ABC和△A′B′C′中,∵∴△ABC≌△A′B′C′()∴∠C′= ______= ______°∴△ABC是直角三角形.提示:BC AC 90B′C′A′C′ 32 42 255A′B′BC=B′C′,AC=A′C′,AB= A′B′SSS∠C 902.思考:若△ABC的三边不是3、4、5,而是a,b,c,但同样满足a2+b2=c2,你能证明△ABC是直角三角形吗? 提示:略3.思考:如果一个定理的逆命题经过证明是正确的,那么它也是一个定理吗?提示:是归纳:1.如果三角形的三边长是a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,是真命题,可以用来判定直角三角形,我们把它称为勾股定理的逆定理.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理“互为逆定理”.活动3:勾股数思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?提示:是6.应用举例【例1】下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中是假命题的有________(填序号).分析:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故是假命题有②.答案:②总结:要判断一个命题是假命题,只需举出一个反例即可.【例2】观察以下几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26;…,根据以上规律的第⑦组勾股数是()A.14、48、49B.16、12、20C.16、63、65D.16、30、34分析:根据前面的几组数可以得到每组勾股数与各组的序号之间的关系,如果是第n组数,则这组数中的第一个数是2(n+1),第二个是:n(n+2),第三个数是:(n+1)2+1.根据这个规律即可解答.解:选C.根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+1),第二个数是n(n+2),第三个数是(n+1)2+1,故可得第⑦组勾股数是16,63,65.总结:勾股数满足的条件只要三个整数中,满足较小两个整数平方的和等于较大整数的平方,那么这三个整数就是一组勾股数.【例3】如图四边形ABCD是一块草坪,量得四边长AB=3 m,BC=4 m,DC=12 m,AD=13 m,∠B=90°,求这块草坪的面积.分析:连接AC,可以把四边形分割成两个三角形,由勾股定理及逆定理说明△ACD为直角三角形,利用三角形面积公式可求四边形ABCD的面积.解:连接AC,在Rt△ABC中,AB=3 m,BC=4 m,∠B=90°,由勾股定理得AB2+BC2=AC2,∴AC=5 m.在△ADC中,AC=5 m,DC=12 m,AD=13 m∵AC2+DC2=169,AD2=169,∴AC2+DC2=AD2 ,∴△ACD为直角三角形,即∠ACD=90°.所以四边形的面积=S Rt△ABC+S Rt△ADC=AB×BC+AC×DC=×3×4+×5×12=36(m2)即这块草坪的面积是36 m2.总结:应用勾股定理的逆定理判断三条线段能否构成直角三角形的方法1.排序:把三条线段按由小到大排列;2.计算:看较小两条线段边的平方和是否等于最大线段的平方;3.结论:判断能否构成直角三角形.三、交流反思这节课我们学习了互逆命题(定理),探索了勾股定理的逆定理,掌握了直角三角形的判别条件(即勾股定理的逆定理),并能进行简单应用,理解勾股定理和勾股定理的逆定理之间的区别.四、检测反馈1.下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,92.分别有下列几组数据:①6、8、10②12、13、5③7、8、15④40、41、9.其中是勾股数的有()A.4组B.3组C.2组D.1组3.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式: __________________.4.下列命题中,其逆命题成立的是________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.5.叙述下列命题的逆命题,并判断逆命题是否正确.(1)如果a3>0,那么a2>0;(2)如果三角形有一个角小于90°,那么这个三角形是锐角三角形;(3)如果两个三角形全等,那么它们的对应角相等;(4)关于某条直线对称的两条线段一定相等.6.如图在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求:(1)AC的长度;(2)△ABC的面积.7.如图是一块地的平面图,AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,求这块地的面积.五、布置作业教科书第34页习题17.2第1,2,5题六、板书设计17.2勾股定理的逆定理一、互逆命题(定理)二、勾股数三、勾股定理的逆定理四、例题讲解五、板演练习七、教学反思勾股定理的逆定理这节课的教学,我采用了体验探究的教学方式.在课堂教学中,我首先创设情境,提出问题;再让学生通过画图、测量、判断、找规律,猜想出一般的结论;然后由学生想、画、剪、叠,去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝到成功的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,挤出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度的生活习题的练习,拓宽学生知识面,提高学生的发散思维能力.。
17.1勾股定理
第2课时
【教学目标】
知识与技能:
1.能利用勾股定理解决实际问题.
2.会利用勾股定理解决立体图形中两点距离最短问题.
过程与方法:
经历探究与勾股定理有关的实际问题的过程,学会利用勾股定理解决实际问题的方法.
情感态度与价值观:
在小组合作交流中,培养协作精神、探究精神,增强学习信心.
【重点难点】
重点:能利用勾股定理解决简单的实际问题.
难点:能利用勾股定理解决立体图形中两点之间距离最短问题.
【教学过程】
一、创设情境,导入新课:
【导入新课】
如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一千米造价为300万元,隧道总长为2千米,隧道造价每千米为1 000万元,AC=80千米,BC=60千米,则改建后可省工程费用是多少?
你能解答上面问题吗?这一节课我们就来探究这类问题.
二、探究归纳
活动1:利用勾股定理解决实际问题的一般步骤:
1.将实际问题转化为数学问题;
2.明确已知条件及结论;
3.利用勾股定理解答,确定实际问题的答案.
活动2:立体图形异面两点之间的距离问题:
1.如图,有一个圆柱,它的高等于16 cm,底面半径等于4 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,在求需要爬行的最短路程时首先需将圆柱体展开,连接A、B,圆柱的侧
面展开图是______,点B的位置应该在长方形的边CD的______处.点A到点B的最短距离为线段______的长度.
答案:长方形中点AB
2.如图,正四棱柱的底面边长为5 cm,侧棱长为6 cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处,求出蚂蚁需要爬行的最短路程的长时,由点A到点C1的展开图有两种情况.
活动3:例题讲解
【例1】一架长5米的梯子AB,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,论证你的结论.
分析:根据勾股定理可求得如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米.
解:是.
证明1:在Rt△ACB中,BC=3,AB=5,AC==4米,DC=4-1=3米.
在Rt△DCE中,DC=3,DE=5,CE==4米,BE=CE-CB=1,即梯子底端也滑动了1米.
证明2:
在Rt△ACB中,BC=3,AB=5,AC==4米,DC=4-1=3米,
可证Rt△ECD≌Rt△ACB,
∴CE=AC=4米,BE=CE-CB=1,即梯子底端也滑动了1米.
总结:应用勾股定理解决实际问题的步骤
1.读懂题意,分析数量关系,数形结合,正确标图,将条件反映到图形中,建立数学模型;
2.应用勾股定理进行计算或建立等量关系,构建方程求解,解决实际问题.
【例2】如图,长方体盒子(无盖)的长、宽、高分别是12 cm,8 cm,30 cm.
(1)在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?
(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?
分析:(1)要求长方体中两点之间的最短路径,最直接的作法,就是将长方体的侧面展开,然后利用两点之间线段最短解答.
(2)利用长方体的性质,连接AG,BG利用勾股定理解答即可.
解:(1)将长方体沿AB剪开,使AB与D在同一平面内,得到如图所示的长方形,连接CD,
∵长方体盒子(无盖)的长、宽、高分别是12 cm,8 cm,30 cm,即DE=12 cm,EF=
30 cm,AE=8 cm,
∴CD====25 cm.
(2)连接AG,BG,
在Rt△BFG中,GF=12 cm,BF=8 cm,由勾股定理得,
GB=== cm,
在Rt△AGB中,GB= cm,AB=30 cm,
由勾股定理得,AG===2cm.
总结:求立体图形表面上两点之间的最短距离的问题,关键是把立体图形的侧面展开成平面图形,采用“化曲为直”的方法,利用平面上“两点之间线段最短”的公理解题.把空间图形转化为平面图形是解数学题中的重要转化思想之一.
三、交流反思
这节课我们学习了利用勾股定理解决实际问题及应用勾股定理求最短距离问题.关键是建立数学模型,把实际问题转化为数学问题,再用勾股定理等知识来解答.
四、检测反馈
1.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1 m处折断,树尖B恰好碰到地面,经测量AB=2 m,则树高为()
A. m
B. m
C.(+1)m
D.3 m
2.如图,一根12 m高的电线杆两侧各用15 m的铁丝固定,两个固定点AB之间的距离是 ()
A.13
B.9
C.18
D.10
3.如图,有一个圆锥,高为8 cm,直径为12 cm.在圆锥的底边B点处有一只蚂蚁,它想吃掉圆锥顶部A处的食物,则它需要爬行的最短路程是()
A.8 cm
B.9 cm
C.10 cm
D.11 cm
4.如图,圆柱的底面周长为6 cm,AC是底面圆的直径,高BC=6 cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()
A.cm
B.5 cm
C.6 cm
D.7 cm
5.如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要______ m.
6.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为________ mm.
7.木工师傅做一个人字形屋梁,如图所示,上弦AB=AC=4 m,跨度BC为6 m,现有一根长为3 m的木料打算做中柱AD(AD是△ABC的中线),请你通过计算说明这根木料的长度是否适合做中柱AD.(只考虑长度、不计损耗)
8.我们古代数学中有这样一道数学题:
有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?
(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).
五、布置作业
教科书第28页习题17.1第2,3,4,5,10题
六、板书设计
七、教学反思
1.利用勾股定理解决实际问题关键是做到:
(1)引导学生分析实际问题,明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题.引导学生分析总结得出应用勾股定理解决实际问题的步骤;
(2)读懂题意,分析数量关系,数形结合,正确标图,将条件反映到图形中,建立数学模型;
(3)应用勾股定理进行计算或建立等量关系,构建方程求解,解决实际问题.
2.应用勾股定理求最短距离问题:
(1)引导学生分析总结得出求立体图形表面上两点之间的最短距离的问题,关键是把立体图形的侧面展开
成平面图形,采用“化曲为直”的方法,利用平面上“两点之间线段最短”的公理解题.把空间图形转化为平面图形是解数学题中的重要转化思想之一.
(2)关于立体图形中两点距离最短问题,这对不少学生来说是一个难点,教师要引导学生充分发挥空间想象能力,把立体图形转化成平面图形,让学生体会解决此类问题的方法:将立体图形(或曲面)展开为平面图形,再利用勾股定理求解.通过例题讲解及练习让学生掌握.。