八年级上册数学一次函数复习资料
- 格式:doc
- 大小:369.50 KB
- 文档页数:37
《一次函数》全册知识点复习总结及经典练习汇总知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-k b﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2);③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32-m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x的一次函数.例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.例5 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是()A.m﹤O B.m>0C.m﹤21D.m>M例7 已知一次函数y=kx+b的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S=4,求P点的坐标.△ABP例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
八年级上册数学一次函数复习资料变量与函数一、知识回顾1、变量:在一个变化过程中可以取不同数值的量,函数中用x表示。
常量:在一个变化过程中只能取同一数值的量,往往用c来表示。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
二、典型例题例1:骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A.沙漠B.体温 C.时间D.骆驼分析:因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.解答:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选C.例2:在圆的周长公式C=2r中,变量是________,________,常量是________.分析:根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.解答:∵在圆的周长公式C=2r中,C与r是改变的,是不变的;∴变量是C,r,常量是2.______________________________________________________________________例3.下列各曲线中,不能表示y是x的函数的是()分析:根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.解答:在A、B、D、选项的图上任意取一点,做垂直于x的直线,发现只有一个交点,故正确。
而C选项、很明显,不止一个交点,不是一一对应关系,所以不是函数,错误;故选C例4:下列解析式中,y不是x的函数是()A.y+x=0 B.|y|=2x C.y=|2x| D.y=2x2+4分析:本题需利用函数的定义解决问题.解答:因为在|y|=2x中,若x=2,y就有2个值与其对应,所以y不是x的函数.故选B._______________________________________________________________________例5:下列函数中,与y=x表示同一个函数的是()分析:函数y=x中,自变量x和函数值y均可取任意实数,判断两个函数是不是同一个函数,关键看它们的定义域和值域是不是一样。
依次分析四个选项,自变量和函数值均可取任意实数的为正确答案.解答:A、x不能为0;B、y不能为负数;C、y不能为负数;D、正确.故本题选D.例6:点(2,-1)在下列函数图象上的是()A.y=2x B.y=x2-3 C.y=-x+1D.y=2x-1分析:判断点在不在函数图象上,不需要画图,只需要把点的坐标带入函数关系式即可,如果等式成立,点就满足这个函数就在函数图象上,反之不在。
解答:A、y=2 2 =1≠-1,故本选项错误;B、y=22-3=1≠-1,故本选项错误;C、y=-2+1=-1,故本选项正确;D、y=2×2-1=3≠-1,故本选项错误.故选:C.例7:一长方形的周长为20厘米,则它的长x厘米与宽y厘米之间的关系是:_________分析:根据长方形的另一边长=周长的一半-一边长,把相关数值代入即可求解.解答:∵长方形的周长是20厘米,一边长为x厘米,∴长方形的另一边长=20/2 -x=10-x,∴它的长x厘米与宽y厘米之间的关系是:y=10-x;故填:y=10-x.分析:根据分式、二次根式有意义的条件列出关于x的不等式,通过解不等式求得x 的取值范围,然后将其表示在数轴上即可.解答:根据题意,得:6-2x>0,解得x<3;在数轴上表示为:故选B.例9:(2012·南充)在函数: 中,自变量x的取值范围是()A.x≠1/2B.x≤1/2 C.x<1/2 D.x≥1/2分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:根据题意得,1-2x≥0且x-1/2 ≠0,解得x≤1/2 且x≠1/2 ,所以x<1/2 .故选C.三、解题经验本节重点是理解函数的概念,具体理解方法在“函数知识点整理”中有。
我们在判断图像是不是函数图像时的依据是“一一对应关系”。
判断点在不在函数图象上时,依据是直接把点带入到函数关系式中,如果等式成立则满足。
判断是不是表示同一个函数时,只需要判断定义域和值域,如果相同,则表示的是同一个函数。
变量与函数2一、知识回顾1、定义域:x的取值范围。
一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
常见的情况:①:根号下面的≥0;②:分母≠0;③:有指数时,底数≠02、值域:y的取值范围。
一般情况下根据x的取值来判定。
二、典型例题例1:求下列函数中自变量x的取值范围(定义域)分析:(1)函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.(2)根据分母不等于0列式计算即可得解.(3)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:(1)根据题意得:2x-3≥0,解得x≥3/2 .(2)根据题意得,x-2≠0,解得x≠2.(3)根据题意得:2-x≥0且x-2≠0,解得:x≤2且x≠2,即x<2.故选D._____________________________________________________________________ ________________________例2:下图中,分别给出了变量x与y之间的对应关系,y不是x的函数的是()分析:函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.解答:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以D不正确.故选D._____________________________________________________________________ ________________________例3:下列图象不表示y是x的函数的是()分析:根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应.做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.由此很容易就能得出结论。
解答:解:根据函数的定义可知,只有B不能表示函数关系.故选B._____________________________________________________________________ ________________________例4:下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d的关系,下面能表示这种关系的式子是():A.b=d2B.b=2d C.b=d/2 D.b=d+25分析:这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.解答:由统计数据可知:d是b的2倍,所以,b=d2.故本题选C.三、解题经验求函数中自变量x的取值范围时,通常有这几种情况:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.判断图像是不是函数图象的方法是:做垂直x轴的直线在左右平移的过程中如果始终只有一个交点,那么就是函数图象,反之不是。
一次函数的定义一、知识回顾1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)要使y=kx+b是一次函数,必须k≠0。
如果k=0,则kx=0,y=kx+b就不是一次函数;(2)当b=0时,y=kx,y叫x的正比例函数。
2、正比例函数:形如y=kx(k为常数,且k≠0)的一次函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。
二、典型例题例1:(2006?武汉)下列函数:①y=x;②y=x/4 ;③y=4/x ;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4分析:根据一次函数的定义条件进行逐一分析即可.注意:一个单项式中,所有字母的指数的和叫做这个单项式的次数解答:①y=x是一次函数;②y=x/4 是一次函数;③y=4/x ,两边同时乘以x得到:xy=4,是二次,故不是一次函数;④y=2x+1是一次函数.故选C._____________________________________________________________________ ______________________例2:函数y=(m-2)xn-1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=0分析:根据一次函数的定义列出方程组解答即可.一次函数固然最高次项为1,并且x 的系数不能为0,为0就没有未知数了。
解答:∵函数y=(m-2)x n-1+n是一次函数,∴{ m-2≠0{ n-1=1 解得:m≠2 ,n=2故选C.______________________________________________________________________ _____________________例3:一次函数y=-2x-1,当x=-5时,y=________,当y=-7时,x=________.分析:直接将x=-5和y=7分别代入解析式即可求解.解答:把x、y的值分别代入一次函数y=-2x-1,当x=-5时,y=-2×(-5)-1=9;当y=-7时,-7=-2x-1,解得x=3.故填9、3.______________________________________________________________________ _____________________例4:列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数 B.y=x/k (常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数分析:根据一次函数和正比例函数的定义条件进行逐一分析即可.解答:A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B、y=x/k (常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.三、解题经验本节知识点比较简单,理解了函数的概念后,很容易就能掌握一次函数的概念。