基于MatLab/Simulink的单片机控制系统仿真
- 格式:pdf
- 大小:170.28 KB
- 文档页数:4
MATLAB 和Simulink 环境下控制系统的动态仿真袁亮亮 机械设计制造及其自动化082班 08556233摘要:文章着重阐述可在MA TLAB 和Simulink 环境下对实际控制对象的动态仿真过程和意义,同时对两种仿真方法进行了比较。
关键词:控制系统;动态仿真;MA TLAB ;Simulink生产过程自动化是指在轻工、纺织、电力、化工、冶金等生产中,对于温度、压力、流量、液体或流体的成分等变量实现自动控制、自动检测。
生产过程自动化在国名经济中起着重要的作用,它是提高劳动生产率,降低能源消耗、改善劳动条件的重要手段,也是现代化企业的重要标志之一为克服实训设备的缺乏或条件的局限,高职院校在培养专业人才上不仅应该重视理论知识,更要大力培养学生对于实际控制系统运行的分析、操作能力。
而MA TLAB 作为当前国际控制界最流行的面向控制与科学计算机的高级语言,以及MA TLAB 环境下的Simulink 是一个用于系统建模、仿真和分析的最强大/最优秀、最容易掌握的软件,对于提高学生的知己控制系统的运行、分析、处理能力大有益处,同时节省大量实训设备的投资,可以起到事半功倍的效果。
1. MALAB 仿真图框及仿真程序MA TLAB 是目前国际最流行的控制系统计算机辅助设计的软件工具,广泛应用于控制界、生物医学界、语言处理界、图像信号处理、雷达工程、信号分析、计算机技术等领域。
用MALAB 编程运算与人进行科学计算的思路和表达方式完全一致,尤其进行数学运算非常方便;MALAB 工具箱功能强大,即使没有C 或FORTRAN 程序设计语言的基础,也可以设计出功能强大、界面优美、稳定可靠的高质量程序,而且编程效率和计算效率极高。
以实验室锅炉模型的液位自动控制系统为例加以讨论,其数学模型为20.08() 2.03G s s s =+按10:1衰减曲线法(使用simulink 仿真)整定PID 调节器的参数,其传递函数确定为,其单位阶跃响应曲线用MA TLAB 仿真图1所示图1 锅炉液位MA TLAB 仿真曲线MA TLAB 程序:%picontrolr=1;num1=[182.0 8.3];den1=[22 0];num2=[0.08];den2=[2.03 1 0];[num3 den3]=series(num1,den1.num2,den2);[num den]=cloop(num3,den3);[A b c d]=tf2ss(num,den);Tf=input(‘仿真时间Tf=’);h=input(‘计算步长h=’);1()8.3(1)22C G s s =+x=[zeros(length(A),1)];y=0,t=0;for i=1:Tf/hk1=A*x+b*r;k2=A*(x+h*k1/2)+b*r;k3=A*(x+h*k2/2)+b*r;k4=A*(x+h*k3)+b*r;x=x+h*(k1+2*k2+2*k3+k4)/6;y=[y;c*x];t=[t;t(i)+h];endplot(t,y)其中:Tf=25H=0.02从系统运行的仿真结果看,基本达到设计要求。
基于MatlabSimulink的控制系统设计与仿真控制系统设计与仿真是现代工程领域中至关重要的一部分,它涉及到对系统的建模、控制器设计以及性能评估等方面。
MatlabSimulink作为一款强大的工程仿真软件,在控制系统设计与仿真中扮演着重要的角色。
本文将介绍基于MatlabSimulink的控制系统设计与仿真的基本原理、方法和应用。
1. 控制系统设计基础在开始介绍基于MatlabSimulink的控制系统设计与仿真之前,我们首先需要了解控制系统设计的基础知识。
控制系统通常由被控对象、传感器、执行器和控制器等组成。
其中,被控对象是需要被调节或控制的物理系统,传感器用于采集被控对象的状态信息,执行器则根据控制器输出的信号对被控对象进行调节,而控制器则根据传感器采集的信息和设定的目标来生成控制信号。
2. MatlabSimulink简介MatlabSimulink是MathWorks公司推出的一款用于数学建模、仿真和算法开发的工具。
它提供了丰富的模块库和直观的图形化界面,使工程师能够快速地建立模型、进行仿真并进行实时分析。
在控制系统设计领域,MatlabSimulink可以帮助工程师快速搭建控制系统模型,并进行性能评估。
3. 控制系统建模与仿真在MatlabSimulink中,可以通过拖拽不同的模块来建立控制系统模型。
常见的模块包括传感器、执行器、PID控制器等。
通过连接这些模块,并设置相应的参数,可以构建一个完整的控制系统模型。
一旦建立好模型,就可以进行仿真分析了。
MatlabSimulink提供了丰富的仿真工具,可以对系统进行时域分析、频域分析等。
4. 控制器设计与调试在控制系统设计中,控制器设计是至关重要的一环。
MatlabSimulink提供了各种常见的控制器设计方法,如PID控制器、状态空间反馈等。
工程师可以根据系统需求选择合适的控制器,并通过仿真来验证其性能。
此外,在调试阶段,MatlabSimulink还提供了丰富的调试工具,如信号监视器、作用力显示等,帮助工程师快速发现问题并进行调整。
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
基于MATLABSimulink的控制系统设计与仿真控制系统设计是现代工程领域中至关重要的一部分,它涉及到对系统动态特性的分析、建模、控制器设计以及系统性能评估等方面。
MATLAB Simulink作为一款强大的工程仿真软件,在控制系统设计与仿真领域有着广泛的应用。
本文将介绍基于MATLAB Simulink的控制系统设计与仿真过程,包括系统建模、控制器设计、性能评估等内容。
1. 控制系统设计概述控制系统是通过对被控对象施加某种影响,使其按照既定要求或规律运行的系统。
在控制系统设计中,首先需要对被控对象进行建模,以便进行后续的分析和设计工作。
MATLAB Simulink提供了丰富的建模工具和仿真环境,可以帮助工程师快速准确地建立系统模型。
2. 系统建模在MATLAB Simulink中,可以利用各种不同的模块来构建系统模型,如传感器、执行器、控制器等。
通过简单拖拽这些模块并连接起来,就可以构建出完整的系统结构。
同时,Simulink还支持连续系统和离散系统的建模,可以方便地进行时域和频域分析。
3. 控制器设计控制器是控制系统中至关重要的一部分,它根据系统反馈信息对输出信号进行调节,以实现对被控对象的精确控制。
在MATLAB Simulink中,可以使用各种不同类型的控制器设计工具,如PID控制器、状态空间反馈控制器等。
通过这些工具,工程师可以快速设计出符合系统要求的控制器。
4. 性能评估在完成控制器设计后,需要对系统性能进行评估。
MATLAB Simulink提供了丰富的仿真功能,可以对系统进行动态响应、稳定性、鲁棒性等方面的评估。
通过仿真结果,工程师可以及时发现问题并进行调整优化。
5. 实例分析为了更好地说明基于MATLAB Simulink的控制系统设计与仿真过程,我们以一个温度控制系统为例进行分析。
首先建立被控对象的数学模型,然后设计PID控制器,并利用Simulink进行仿真验证。
最后根据仿真结果对系统性能进行评估,并进行必要的调整。
基于matlab simulink的系统仿真技术与应用
Matlab Simulink是一种用于仿真和分析各种复杂系统的建模仿真工具,它采用对象模型方法和图形化界面,极大地方便了工程师的仿真设计分析过程。
其电子工程仿真应用特别广泛,既可以模拟模型上的电路,还可以处理控制系统、数字系统、仿真信号、信号处理、通信系统及某些特定的设备系统,甚至可以构建一个模拟环境来建立系统对象、以模型象征性描述,进行逼真的仿真及调试。
Simulink仿真技术结合Matlab编程语言可用于系统建模实现,用于分析和仿真不同层次的复杂系统,有助于更好的理解的系统的构成和行为,为系统优化和综合设计提供帮助,并可以更好的准确地预测系统行为。
Simulink技术主要用于汽车控制、航空航天、船舶航行、航天实验、发动机控制、电力传输、机械系统、自动化控制、机器人控制等多个领域。