初二数学--勾股定理讲义
- 格式:doc
- 大小:96.50 KB
- 文档页数:7
初二数学讲义勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. (方法一)(方法二)(方法三)a b ccb a E DC B A方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以A B方法三:,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 例题解析题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=考点一、已知两边求第三边例.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.练习一1.已知直角三角形的两边长为3、2,则另一条边长________________.2.(2009年滨州)某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°, 90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段 楼梯所铺地毯的长度应为 .3.在数轴上作出表示10的点.4.三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜B CA 30CB A DE F 边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积考点二、利用列方程求线段的长例.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处? 练习二 如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m题型四:与展开图有关的计算例4、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm题型五:勾股定理的实际应用 用勾股定理求两点之间的距离问题例、如图所示,在一次夏令营活动中,小明从营地A 点出发,沿北偏东60°A DE B CA B C D E 第7题F E D CB A 第9题 方向走了到达B 点,然后再沿北偏西30°方向走了500m 到达目的地C点。
数学学科辅导讲义教学内容勾股定理教学目标一.考点:1.求线段长;2.最短路径问题;3.两点之间距离公式.教学重点根据已知条件,分析相应图形,并选取合适的方法,求线段长.教学难点1.在应用勾股定理的过程中,注意分清楚直角边和斜边,选择正确的公式来进行计算;2.所对的直角边是斜边的一半,注意分清楚“所对的直角边”和“斜边”.教学过程知识详解一.求线段长求线段长1.直接利用勾股定理:已知直角三角形的两条边,求另外一条;2.通过设未知数,根据勾股定理列方程,解方程;特殊三角形比例关系图1中,图2中,等面积法求高勾股定理与角平分线结合已知,AD为∠CAB的角平分线,则CD=CE,AC=AE已知AD、AC,根据勾股定理,可求出CD勾股定理与折叠问题结合直角三角形ABC中,折叠使点C与点A重合,则AE=CE,C△ABE=AB+BC=9+12=21网格与勾股定理辅助线构造直角三角形(1)与等腰三角形三线合一结合求各边长上图等腰△ABC中,作AD⊥BC,构造出30°、60°、90°的特殊三角形(2)作垂直构造直角三角形,并与特殊角结合下图中,已知任意一边长,可求出图中其他的边长二.勾股定理与最短距离1. 画出立体图形的展开图2. 利用“两点之间线段最短”和“勾股定理”求出最短距离分类思路图示正方体1. 画出平面展开图2. 确定A、B两点的对应点,连接后求解长方体长方体的平面展开图会有两种情况,选择路径更短的求解圆柱 B 点应该在侧面展开图的中间线上缠绕多圈1.圆柱体:看做是多个最短路径的结合2.长方体:展开侧面,连接A 、B 两点即可典型例题进门测:1. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 2. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形3. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°4.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D 12cm 25.如图(第17题)底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ).A .10B .8C .5D .4AB EF DC (图2)6.如图(第18题),已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC,交AD于点E,AD=8,AB =4,则DE的长为( ).A.3 B.4 C.5 D.67.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.32B.4 C.25D.4.51.点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s,设运动时间为t秒.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗:若变化,则说明理由,若不变,则求出它的度数;(2)连接PQ,①当t=2秒时,判断△BPQ的形状,并说明理由;②当PQ⊥BC时,则t=秒.(直接写出结果)2.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.3.如图1,△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:∠A=∠CED;(2)如图2,若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.随堂检测1.直角三角形两锐角的平分线所成钝角的度数是( )A.115°B.125°C.135°D.无法确定2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边之比为5:12:13;④三边长分别为7,24,25.其中直角三角形有( )A.1个B.2个C.3个D.4个3.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别为( ) A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,104.一等腰三角形底边长为10 cm,腰长为13 cm,则腰上的高为( )A.12 cm B.6013cm C.12013cm D.135cm6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A.42 B.32 C.37或33 D.42或32课后练习1.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( ) A.12个B.10个C.8个D.6个2.如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5 B.5或8 C.52D.4或52第2题图第3题图3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值_________.4.直角三角形三角形两直角边长为5和12,三角形内一点到各边距离相等,那么这个距离为________.4.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为6.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.选择题专题6.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )A.2 cm B.4 cm C.6 cm D.8 cm7.如图,一架长2.5 m的梯子,斜靠在竖直的墙上,这时梯子顶端离地面2.4 m,为了安装壁灯.梯子顶端离地面降至2m,请你计算一下,此时梯子底端应再向远离墙的方向移动( )A.0.4 m B.0.8 m C.1.2 m D.不能确定8.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为( )A.7 m B.8 m C.9 m D.10 m9.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600 m B.500 m C.400 m D.300 m。
初二数学勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有2c22+ba=勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
(2)如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2n B、n+1 C、n2-1 D、1n2+(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+=a c b+= B.222a b cC.222+= D.以上都有可能c b a(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m B、362c m C、482(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
初二数学 勾股定理【知识点归纳】考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是() A 、2n B 、n+1 C 、n 2-1 D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、242c mB 、36 2c mC 、482c mD 、602c m(3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15例3:探索勾股定理的证明有四个斜边为c 、两直角边长为a,b 的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。
考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。
(2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数)(3)直角三角形的判定方法:①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。
②有一个角是直角的三角形是直角三角形。
③两内角互余的三角形是直角三角形。
④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
例题:例1:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17(2)若线段a ,b ,c 组成直角三角形,则它们的比为( )A 、2∶3∶4B 、3∶4∶6C 、5∶12∶13D 、4∶6∶7例2:利用勾股定理逆定理判断三角形的形状(1)下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3;③△ABC 中,a :b :c=3:4:5;④△ABC 中,三边长分别为8,15,17.其中是直角三角形的个数有( ).A .1个B .2个C .3个D .4个(2)若三角形的三边之比为21::122,则这个三角形一定是( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.不等边三角形(3)已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 (4)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形(5)若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。
(6)△ABC 的两边分别为5,12,另一边为奇数,且a+b+c 是3的倍数,则c 应为 ,此三角形为 。
例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。
(2)已知三角形三边的比为1:3:2,则其最小角为 。
考点三:勾股定理的应用例题:例1:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A. 13B. 26C. 47D. 94(图1) (图2) (图3)(3)如图,△ABC为直角三角形,分别以AB,BC,AC为直径向外作半圆,用勾股定理说明三个半圆的面积关系,可得()A. S1+ S2> S3B. S1+ S2= S3C. S2+S3< S1D. 以上都不是(2)如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S1例2:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;•另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高例3:最短路程问题(1)如图1,已知圆柱体底面圆的半径为2,高为2,AB,CD分别是两底面的直径,AD,BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是。
(结果保留根式)(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短距离为。
(图1)(图2)例4:航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距________海里.(2)(深圳)如图1,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。
该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险试说明理由。
(图1)(图2)(3)如图2,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险例5:网格问题(1)如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.3(2)如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对(3)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是( ) A.25 B. 12.5 C. 9 D. 8.5(图1)(图2)(图3)例6:图形问题(1)如图1,求该四边形的面积(2)(2010四川宜宾)如图2,已知,在△ABC中,∠A= 45°,AC= 2,AB= 3+1,则边BC的长为.(图1)(图2)(3)某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由.(4)(太原)将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围。
【中考链接】1.(2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为(A )4 cm (B )5 cm (C )6 cm (D )10 cm2.(2010 山东荷泽)(本题满分8分)如图所示,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5㎝,求AB 的长.3. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:①使三角形的三边长分别为3、8、5(在图甲中画一个即可);②使三角形为钝角三角形且面积为4(在图乙中画一个即可).4.(2010广东湛江)下列四组线段中,可以构成直角三角形的是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,65.(2010 四川泸州)在△ABC 中,AB=6,AC=8,BC=10,则该三角形为( )A .锐角三角形B .直角三角形C . 钝角三角形D .等腰直角三角形6.(2010辽宁丹东市)已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt△ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .7.(2010广西南宁)如图,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:(A )b c a << (B )c b a << (C )b a c << (D )a b c <<8.(2010 湖北孝感)(本题满分10分)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。
[定理表述]请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);(3分) ABC D[尝试证明]以图1中的直角三角形为基础,可以构造出以a 、b 为底,以b a +为高的直角梯形(如图2),请你利用图2,验证勾股定理;(4分)[知识拓展]利用图2中的直角梯形,我们可以证明.2<+cb a 其证明步骤如下: AD b a BC ,+= = 。