multisim仿真教程正弦波脉宽调制(SPWM)逆变电路精品PPT课件
- 格式:pptx
- 大小:394.69 KB
- 文档页数:34
6 正弦波脉宽调制逆变器的MATLAB仿真6.1正弦波脉宽调制逆变器的原理和仿真模型6.1.1正弦波脉宽调制逆变器的原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。
然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。
这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。
同样,正弦波的负半周也可用相同的方法来等效。
这一系列脉冲波形就是所期望的逆变器输出SPWM波形。
由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了(见图6-1,6-2,6-3 )。
逆变器输出脉冲的幅值就是整流器的输出电压。
当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。
从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。
但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。
在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果(6-1)可控整流器调压、六拍逆变器变频(6-2)不控整流、斩波器调压、六拍逆变器变频(6-3)不控整流、PWM逆变器调压调频1.工作原理图6-4是SPWM变频器的主电路,图中VTl-VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。
图6-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。
实验九 单相正弦波脉宽调制(SPWM )逆变一.实验目的1.熟悉单相交直交变频电路原理及电路组成2.熟悉ICL8038的功能。
3.掌握SPWM 波产生的基理。
4.分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。
二.实验所需挂件及附件 序号型号 备注 1DJK01电源控制屏 该控制屏包含“三相电源输出”等模块 2DJK09单相调压与可调负载 该挂件包含“单相自耦调压器”等模块 3DJK14 单相交直交变频原理 4双踪示波器 5 万用表三.实验线路及原理采用SPWM 正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。
实验电路由三部分组成:即主电路,驱动电路和控制电路。
1.主电路部分如图3-20所示,交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供); 逆变部分(DC/AC)由四只IGBT 管组成单相桥式逆变电路,采用双极性调制方式。
输出经LC 低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。
本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。
1.驱动电路如图3-21(以其中一路为例)所示,采用IGBT 管专用驱动芯片M57962L ,其输入端接控制电路产生的SPWM 信号,其输出可用以直接驱动IGBT 管。
其特点如下: ①采用快速型的光耦实现电气隔离。
②具有过流保护功能,通讨检测IGBT 管的饱和压降来判断IGBT 是否过流,过流时AC/DC (整流) DC/AC (逆变)图3-20 主电路结构原理图IGBT 管CE 结之间的饱和压降升到某一定值,使8脚输出低电平,在光耦TLP521的输出端OC1呈现高电平,经过流保护电路(见图3-22),使4013的输出Q 端呈现低电平,送控制电路,起到了封锁保护作用。
3.控制电路控制电路如图3-23所示,它是由两片集成函数信号发生器ICL8038为核心组成,其中一片8038产生正弦调制波U r ,另一片用以产生三角载波U c ,将此两路信号经比较电路LM311异步调制后,产生一系列等幅,不等宽的矩形波U m ,即SPWM 波。
6 正弦波脉宽调制逆变器的MATLAB仿真6.1正弦波脉宽调制逆变器的原理和仿真模型6.1.1正弦波脉宽调制逆变器的原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。
然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。
这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。
同样,正弦波的负半周也可用相同的方法来等效。
这一系列脉冲波形就是所期望的逆变器输出SPWM波形。
由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了(见图6-1,6-2,6-3 )。
逆变器输出脉冲的幅值就是整流器的输出电压。
当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。
从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。
但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。
在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果(6-1)可控整流器调压、六拍逆变器变频(6-2)不控整流、斩波器调压、六拍逆变器变频(6-3)不控整流、PWM逆变器调压调频1.工作原理图6-4是SPWM变频器的主电路,图中VTl-VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。
图6-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。
实验九 单相正弦波脉宽调制(SPWM )逆变一.实验目的1.熟悉单相交直交变频电路原理及电路组成2.熟悉ICL8038的功能。
3.掌握SPWM 波产生的基理。
4.分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。
二.实验所需挂件及附件 序号型号 备注 1DJK01电源控制屏 该控制屏包含“三相电源输出”等模块 2DJK09单相调压与可调负载 该挂件包含“单相自耦调压器”等模块 3DJK14 单相交直交变频原理 4双踪示波器 5 万用表三.实验线路及原理采用SPWM 正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。
实验电路由三部分组成:即主电路,驱动电路和控制电路。
1.主电路部分如图3-20所示,交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供); 逆变部分(DC/AC)由四只IGBT 管组成单相桥式逆变电路,采用双极性调制方式。
输出经LC 低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。
本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。
1.驱动电路如图3-21(以其中一路为例)所示,采用IGBT 管专用驱动芯片M57962L ,其输入端接控制电路产生的SPWM 信号,其输出可用以直接驱动IGBT 管。
其特点如下: ①采用快速型的光耦实现电气隔离。
②具有过流保护功能,通讨检测IGBT 管的饱和压降来判断IGBT 是否过流,过流时AC/DC (整流) DC/AC (逆变)图3-20 主电路结构原理图IGBT 管CE 结之间的饱和压降升到某一定值,使8脚输出低电平,在光耦TLP521的输出端OC1呈现高电平,经过流保护电路(见图3-22),使4013的输出Q 端呈现低电平,送控制电路,起到了封锁保护作用。
3.控制电路控制电路如图3-23所示,它是由两片集成函数信号发生器ICL8038为核心组成,其中一片8038产生正弦调制波U r ,另一片用以产生三角载波U c ,将此两路信号经比较电路LM311异步调制后,产生一系列等幅,不等宽的矩形波U m ,即SPWM 波。
单相正弦波PWM逆变电路仿真报告1. 仿真目的:通过对单相SPWM逆变电路不同控制方式的仿真研究,进一步理解SPWM 控制信号的产生原理,单极性、双极性控制方式的原理及不同、载波比与调制深度不同对逆变电路输出波形的影响等。
2. 仿真原理:2.1 单相桥式逆变电路图1 所示为单相桥式逆变电路的框图,设负载为阻感负载。
在桥式逆变电路中,桥臂的上下两个开关器件轮流导通,即工作时V1 和V2 通断状态互补,V3 和V4 的通断状态互补。
下面将就单极性及双极性两种不同的控制方法进行分析。
图1 单相桥式PWM逆变电路2.2 不同控制方式原理2.2.1 单极性控制方式调制信号u r为正弦波,载波u c在u r的正半周为正极性的三角波,在u r的负半周为负极性的三角波。
在u r的正半周,V1保持通态,V2保持断态,在u r>u c 时使V4导通,V3关断,u0=U d; 在u r<u c时使V3导通,V4关断,u0=0; 在u r 的负半周,V1保持断态,V2保持通态,在u r<u c时使V3导通,V4关断,u0=-U d; 在u r>u c时使V4导通,V3关断,u0=0。
这样就得到了SPWM波形u0。
图2 单极性PWM控制波形2.2.2 双极性控制方式采用双极性方式时,在u r的半个周期内,三角波不再是单极性的,而是有正有负,所得的PWM波也是有正有负。
在u r的一个周期内,输出的PWM波只有两种电平,而不像单极性控制时还有零电平。
在u r的正负半周,对各开关器件的控制规律相同。
即u r>u c时,给V1和V4导通信号,给V2和V3以关断信号,如i0>0,则V1和V4通,如i0<0,则VD1和VD4通,不管哪种情况都是输出电压u0=U d。
u r<u c时,给V2和V3导通信号,给V1和V4以关断信号,这时如i0<0,则V2和V3通,如i0>0,则VD2和VD3通,不管哪种情况都是输出电压u0=-U d。