大数据导论思维第11章 分布式图计算框架SPARK GRAPHX
- 格式:pptx
- 大小:7.51 MB
- 文档页数:48
大数据知识点总结原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,下面由为您整理出的大数据知识点总结内容,一起来看看吧。
1、Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。
充分利用集群的威力进行高速运算和存储。
2、Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。
HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
3、Hadoop的框架最核心的设计就是:HDFS和MapReduce。
HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
4、Hadoop它主要有以下几个优点:(a)高可靠性。
Hadoop按位存储和处理数据的能力值得人们信赖。
(b)高扩展性。
Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
(c)高效性。
Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
(d)高容错性。
Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
(e)低成本。
与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
5、HDFS对外部客户机而言,HDFS就像一个传统的分级文件系统。
Spark图计算GraphX介绍及实例1、GraphX介绍1.1 GraphX应⽤背景Spark GraphX是⼀个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易⽤的⽽丰富的接⼝,极⼤的⽅便了对分布式图处理的需求。
众所周知·,社交⽹络中⼈与⼈之间有很多关系链,例如Twitter、Facebook、微博和微信等,这些都是⼤数据产⽣的地⽅都需要图计算,现在的图处理基本都是分布式的图处理,⽽并⾮单机处理。
Spark GraphX由于底层是基于Spark来处理的,所以天然就是⼀个分布式的图处理系统。
图的分布式或者并⾏处理其实是把图拆分成很多的⼦图,然后分别对这些⼦图进⾏计算,计算的时候可以分别迭代进⾏分阶段的计算,即对图进⾏并⾏计算。
下⾯我们看⼀下图计算的简单⽰例:从图中我们可以看出:拿到Wikipedia的⽂档以后,可以变成Link Table形式的视图,然后基于Link Table形式的视图可以分析成Hyperlinks超链接,最后我们可以使⽤PageRank去分析得出Top Communities。
在下⾯路径中的Editor Graph到Community,这个过程可以称之为Triangle Computation,这是计算三⾓形的⼀个算法,基于此会发现⼀个社区。
从上⾯的分析中我们可以发现图计算有很多的做法和算法,同时也发现图和表格可以做互相的转换。
1.2 GraphX的框架设计GraphX时,点分割和GAS都已成熟,在设计和编码中针对它们进⾏了优化,并在功能和性能之间寻找最佳的平衡点。
如同Spark本⾝,每个⼦模块都有⼀个核⼼抽象。
GraphX的核⼼抽象是Resilient Distributed Property Graph,⼀种点和边都带属性的有向多重图。
它扩展了Spark RDD的抽象,有Table和Graph两种视图,⽽只需要⼀份物理存储。
两种视图都有⾃⼰独有的操作符,从⽽获得了灵活操作和执⾏效率。
学会使用ApacheSpark进行大数据分析和处理的基本操作Apache Spark是一个快速、通用、可扩展的大数据处理引擎,被广泛应用于大数据分析和处理中。
学会使用Apache Spark进行大数据分析和处理的基本操作,对于数据科学家和大数据工程师来说至关重要。
本文将介绍Apache Spark的基本概念和操作,包括数据加载、转换、过滤、聚合以及输出等,以帮助读者快速上手使用Apache Spark进行大数据分析和处理。
第一章:Apache Spark简介与安装Apache Spark是一款开源的大数据处理框架,提供了高效的分布式计算能力,可以处理大规模的数据集。
在使用Apache Spark 之前,我们需要先安装Spark并配置好相应的环境。
具体的安装过程可以在Apache Spark官方网站上找到,并根据操作系统类型和版本进行安装、设置和配置。
第二章:数据加载与存储在使用Apache Spark进行大数据分析和处理之前,我们需要先将数据加载到Spark中。
Spark支持多种数据源和格式,如文本文件、CSV文件、JSON文件、数据库等。
可以使用Spark的API或工具(如spark-submit或spark-shell)来加载和读取数据。
除了加载数据,我们还可以将结果保存到各种外部存储介质中,如HDFS、S3或关系型数据库等。
第三章:数据转换与过滤在数据分析和处理过程中,常常需要对数据进行转换和过滤以满足需求。
Apache Spark提供了丰富的转换和过滤操作,如映射、过滤、排序、去重等。
通过这些操作,我们可以对数据集进行加工和处理,以便于后续的分析和挖掘。
第四章:数据聚合与计算数据聚合是大数据处理中常见的操作之一,Apache Spark提供了多种聚合和计算函数,如求和、平均值、最大值、最小值、统计等。
通过这些函数,我们可以对数据集进行统计和计算,以获取更有价值的信息。
此外,Spark还支持自定义聚合函数和窗口函数,可以满足更加复杂的需求。
云计算与大数据技术知到章节测试答案智慧树2023年最新北京联合大学绪论单元测试1.下列哪些应用属于大数据技术的应用()。
参考答案:音视频网站上通过分析注册用户的浏览习惯,为用户推送感兴趣的音视频。
;手机银行或网上银行在用户画像基础上,对用户群进行定位,挖掘潜在金融服务需求。
;政务领域中的智慧城市建设,如智慧交通、智慧医疗、智慧教育等。
;电商网站上对注册用户浏览信息记录、分析、挖掘,为用户推送感兴趣的商品。
2.日常我们用到的云服务器、钉钉办公软件、百度网盘等应用都是云计算服务厂商提供的云计算服务。
()参考答案:对第一章测试1.云计算的服务模式包括()。
参考答案:平台即服务;软件即服务;基础设施即服务2.云计算的劣势有()。
参考答案:风险被集中;数据泄密的环节增多;严重依赖网络3.云计算部署模型有()。
参考答案:公有云;私有云;混合云4.云计算是把有形的产品(网络设备、服务器、存储设备、各种软件等)转化为服务产品(IaaS,PaaS,SaaS),并通过网络让人们远程在线使用。
()参考答案:对5.云计算是一种计算模式,能够提供随时随地、便捷的、随需应变的网络接入,访问可配置的计算资源共享池。
()参考答案:对第二章测试1.虚拟化技术主要用于云计算物理资源的池化,物理资源不包括()。
参考答案:操作系统2.虚拟技术特性有()。
参考答案:隔离;封装;分区;相对于硬件独立3.虚拟化的益处包括()。
参考答案:实现节能减排;实现动态负载均衡;实现资源最优利用;通过系统自愈功能提升可靠性4.个人PC上使用比较多的虚拟化工具有()。
参考答案:Virtual Box;VMware Workstation5.虚拟化是一项技术,而云是一种环境或服务。
()参考答案:对6.虚拟化的主要功能是把单个资源抽象成多个给用户使用,而云计算则是帮助不同部门或公司访问一个自动置备的资源池。
()参考答案:对第三章测试1.开放系统的存储类型分为内置存储和外挂存储,其中外挂存储可分为()。
Spark大数据处理框架入门与实践概述Spark是现今最流行的大数据处理框架之一,它可以处理多种类型的数据,包括结构化数据、半结构化数据、非结构化数据、日志数据等。
本文将介绍Spark的基本概念与使用方法,并通过实际案例帮助读者快速掌握Spark大数据处理框架。
Spark的基本概念Spark是一种基于内存的分布式计算框架,可以将数据分布在多个节点上进行计算,从而提高计算效率。
Spark的核心理念是弹性分布式数据集(Resilient Distributed Dataset,简称RDD),它是一种分布式的元素集合,通过分布式群集实现高效计算。
RDD 分为两种类型:Spark的高级API中,基于RDD构建的应用程序称为Spark Core。
Spark的优势Speed:Spark使用内存计算,因此速度要比Hadoop快。
Ease of Use:Spark的API非常友好,许多用户花费很短的时间在上手Spark上。
Unified Engine:Spark的统一计算引擎可以处理多个任务,包括批量处理、流处理等。
Real-time stream processing:Spark有流计算框架Spark Streaming,可以进行流处理。
安装Spark安装Java环境下载Spark启动SparkSpark的实践在下面的实践中,我们将从实际的案例开始使用Spark构建项目。
案例描述我们将使用Spark来分析一份数据,该数据是储格拉斯选举数据,包括每个区域的投票情况和每个候选人得票情况。
步骤1:数据探索我们先下载数据并使用Spark来分析。
下载数据分析数据在Spark中,数据可以从多种来源读取,例如HDFS、S3、HTTP等。
对于我们的数据,我们可以使用以下代码从文件中读取。
在将数据读取到Spark中之后,我们可以使用一些API来处理数据。
下面是一些示例代码,用于清理数据并返回有关储格拉斯选举的一些统计信息。
步骤2:数据处理在数据探索之后,我们需要进一步处理数据。
Spark介绍安装在集群上的spark版本:spark-1.6.3-bin-hadoop2.6.tgz scala版本:scala-2.10.4.tgz1、spark是什么Spark,是⼀种通⽤的⼤数据计算框架,正如传统⼤数据技术Hadoop的MapReduce、 Hive引擎,以及Storm流式实时计算引擎等。
Spark包含了⼤数据领域常见的各种计算框架,⽐如:Spark Core⽤于离线计算Spark SQL⽤于交互式查询Spark Streaming⽤于实时流式计算Spark MLlib⽤于机器学习Spark GraphX⽤于图计算Spark主要⽤于⼤数据的计算,⽽Hadoop以后主要⽤于⼤数据的存储(⽐如HDFS、 Hive、 HBase等),以及资源调度( Yarn)Spark+Hadoop的组合,是未来⼤数据领域最热门的组合,也是最有前景的组合!2、spark介绍Spark,是⼀种"One Stack to rule them all"的⼤数据计算框架,期望使⽤⼀个技术堆栈就完美地解决⼤数据领域的各种计算任务。
Apache官⽅,对Spark的定义就是:通⽤的⼤数据快速处理引擎。
Spark使⽤Spark RDD、 Spark SQL、 Spark Streaming、 MLlib、 GraphX成功解决了⼤数据领域中,离线批处理、交互式查询、实时流计算、机器学习与图计算等最重要的任务和问题。
Spark除了⼀站式的特点之外,另外⼀个最重要的特点,就是基于内存进⾏计算,从⽽让它的速度可以达到MapReduce、 Hive的数倍甚⾄数⼗倍!现在已经有很多⼤公司正在⽣产环境下深度地使⽤Spark作为⼤数据的计算框架,包括 eBay、 Yahoo!、 BAT、⽹易、京东、华为、⼤众点评、优酷⼟⾖、搜狗等等。
Spark同时也获得了多个世界顶级IT⼚商的⽀持,包括IBM、 Intel等。
大数据试题及答案大数据试题及答案第一章:概述⑴什么是大数据?大数据是指规模巨大、复杂多样的数据集合,无法通过传统的数据处理工具进行处理与分析。
⑵大数据的特点有哪些?- 体量大:大数据的规模通常以TB、PB、EB等级进行衡量。
- 多样性:大数据包含结构化数据、半结构化数据和非结构化数据。
- 时效性:大数据的产生和更新速度很快。
- 高速性:大数据的处理需要高速的数据存储和计算能力。
⑶大数据的应用领域有哪些?- 金融行业:大数据可以用于风险控制、反欺诈、客户细分等。
- 零售行业:大数据可以用于商品推荐、库存管理、营销策略等。
- 医疗行业:大数据可以用于疾病诊断、药物研发、患者管理等。
第二章:大数据技术⑴大数据的存储技术- 分布式文件系统:HDFS、Ceph等。
- NoSQL数据库:Redis、MongoDB等。
- 列存储数据库:HBase、Cassandra等。
⑵大数据的计算技术- 分布式计算框架:MapReduce、Spark、Flink等。
- 流式计算框架:Storm、Kafka等。
- 图计算框架:GraphX、Giraph等。
⑶大数据的处理技术- 数据清洗与预处理:数据过滤、去重、缺失值处理等。
- 数据挖掘与分析:关联规则挖掘、聚类分析、预测建模等。
- 可视化与报表:数据可视化工具、报表工具等。
第三章:大数据分析⑴数据采集与清洗- 数据采集:从各种数据源中提取数据,如数据库、日志文件、网络爬虫等。
- 数据清洗:对采集到的数据进行去噪、去重、格式化等处理。
⑵数据存储与管理- 数据存储:将清洗后的数据存储到相应的存储系统中,如HDFS、数据库等。
- 数据管理:对存储的数据进行分类、索引、备份等管理。
⑶数据分析与挖掘- 数据预处理:对存储的数据进行特征选择、降维、标准化等处理。
- 数据建模:通过机器学习算法构建预测模型或分类模型。
- 数据评估:对建模结果进行评估和优化。
第四章:大数据应用案例⑴网络广告推荐系统⑵金融风控系统⑶物流运输优化系统第五章:附件本文档所涉及的附件包括示例代码、数据集、技术文档等,请参考附件部分的内容。
Spark的应用与实现Spark的应用与实现Spark是一个开源的通用的大数据处理框架,如果用三个词来形容它,那么就是快、强大和灵活。
Spark支持多种语言,包括Java、Scala、Python等。
作为Hadoop生态系统中的一部分,Spark可以与Hadoop、Hive、HBase等其他技术进行整合,实现更加多样化的数据处理解决方案。
Spark的应用Spark在大数据处理中有非常广泛的应用,可以适用于数据分析、机器学习、图形计算等多个领域。
本节中将简单介绍一下Spark在这些领域的主要应用。
1.数据分析Spark可以运行在一个分布式的集群环境中,通过RDD(弹性分布式数据集)来支持数据处理。
用户可以通过Spark SQL进行数据分析,使用Spark底层的计算引擎可以极大地提高处理大数据时的性能和效率。
在数据仓库的构建方面,Spark也有很强的优势,它可以连接各种存储系统,如Hadoop HDFS、Hive、Cassandra等。
2.机器学习Spark支持运行在机器学习算法之上的库,如MLlib(机器学习库)等。
在Spark中,MLlib支持多种机器学习模型,如分类、回归、聚类和协同过滤等。
它还支持从多种数据源(如HDFS、Hive、Cassandra 等)中读取数据,从而便于机器学习的建模和优化。
3.图形计算Spark也可以支持图计算框架GraphX。
通过GraphX,用户可以使用Spark来分析网络数据和图像数据。
图计算特别适合于分布式图分析、推荐算法和社交媒体分析等场景。
Spark可以对图进行并行处理,并发聚合,支持节点、边上的属性计算。
Spark的实现Spark的实现基本上可以分为四个主要模块:Spark Core、Spark SQL、MLlib和GraphX。
下面将对这几个模块进行简要介绍。
1. Spark CoreSpark Core是Spark的核心,提供了分布式任务调度、内存计算等基本的功能。