因式分解(分组分解法)最新版
- 格式:ppt
- 大小:258.50 KB
- 文档页数:11
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。
解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。
观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。
解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。
因式分解 (分组分解法)【知识要点】1、定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。
2、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
3、有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++= 例2 把下列各式分解因式(1)bc ac ab a -+-2 (2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++- 例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-; (3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++ 例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+- (3)()()cd b a dc ab 2222--- (4)()()y a bx by b y ax 2233+++ 【思考题】分解因式()()()()2222d b d c c a b a +-+-+++。
3 分组分解整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.1 三步曲我们用上面的整式来说明如何分组分解.例1 分解因式:ax by bx ay --+.解 ax by bx ay --+=()()ax bx ay by -+- [分为两组]=()()x a b y a b -+- [“提”]=()()x y a b +- [再“提”]一般地,分组分解大致分为三步:1.将原式的项适当分组;2.对每一组进行适当分组;3.将经过处理后的每一组当作一项,再采用“提”或“代”进行分解.一位高明的棋手,在下棋时,决不会只看一步,同样,在进行分组时,不仅要看到第二步,而且要看到三步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验,多加练习,就会成为有经验的“行家”.3.2 殊途同归分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法: ax by bx ay --+=()()ax ay ax by +-+=()()a x y b x y +-+=()()x y a b +-.两种做法的效果是一样的,殊途同归!可以说,一种是按照x 与y 来分组(含x 的项在一组,含y 的项在另一组);另一种是按a 与b 来分组.例2 分解因式:221x ax x ax a +++--.解法一 按字母x 的幂来分组.221x ax x ax a +++--=()()()221x ax x ax a +++-+=()()()2111x a x a a +++-+=()()211a x x ++-解法二 按字母a 的幂来分组.221x ax x ax a +++--=()()221ax ax a x x +-++-=()()2211a x x x x +-++-=()()211a x x ++-.3.3 平均分配在例2中,原式的6项是平均分配的,或都要分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配. 例3 分解因式:3254222x x x x x --++-.解 6项可以分成三组,每组两项.我们把幂次相近的项放在一起,即3254222x x x x x --++-=()()()5432222x x x x x -+---=()()()42222x x x x x x -+---=()()4221x x x -+-.本例也可以将6项分为两组,每组三项,即将系数为1的放在一组,系数为-2的放在另一组,详细过程请读者自己完成.例4 分解因式:2222ac bd ad bc +--.解 2222ac bd ad bc +--整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.4瞄准公式如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。