(完整word版)抛物线教学设计
- 格式:pdf
- 大小:438.06 KB
- 文档页数:9
1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)。
2.理解数形结合的思想。
3.了解抛物线的实际背景及抛物线的简单应用。
热点题型一 抛物线的定义及标准方程例1、(2018年全国I 卷理数)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=A. 5B. 6C. 7D. 8 【答案】D【变式探究】【2017课标II ,理16】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N 。
若M 为FN 的中点,则FN = 。
【答案】6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.【变式探究】(1)已知点M (3,2),F 为抛物线y 2=2x 的焦点,点P 在该抛物线上移动,当|PM |+|PF |取最小值时,点P 的坐标为________。
(2)已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交 C .相切 D .不确定|MN |=12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |。
故以M 为圆心,以12|AB |为半径的圆与直线l 相切。
选C 。
【提分秘籍】与抛物线有关的最值问题的解题策略该类问题一般情况下都与抛物线的定义有关。
实现由点到点的距离与点到直线的距离的转化。
(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解。
(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决。
(3)引入变量,建立目标函数,利用不等式或者函数性质求解。
【举一反三】已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=54x0,则x0=()A.1 B.2 C.4 D.8【答案】A热点题型二抛物线的几何性质例2、(2018年全国Ⅲ卷理数)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【答案】2【解析】设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1) 所以,则即故答案为2.【变式探究】【2017课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10【答案】A【变式探究】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3(2)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72B.52 C .3 D .2【解析】(1)因为双曲线的离心率e =ca =2,又a 2+b 2=c 2,所以b =3a ,所以双曲线的渐近线方程为y =±b a x =±3x ,与抛物线的准线x =-p 2相交于A ⎝⎛⎭⎫-p 2,32p ,B ⎝⎛⎭⎫-p 2,-32p ,所以△AOB 的面积为12×p 2×3p =3,又p >0,所以p =2。
“抛物线”单元教学设计一、内容和内容解析(一)内容1.抛物线及其标准方程2.抛物线的简单几何性质本单元内容结构图如下:抛物线的几何情境抛物线的几何特征抛物线的标准方程抛物线的实际应用抛物线的简单几何性质范围、对称性、顶点、离心率(二)内容解析内容本质:本单元是在抛物线的几何情境中,抽象出抛物线的几何特征,然后建立其标准方程,再利用标准方程研究其几何性质,并利用它们解决简单的实际问题.蕴含的思想与方法:本单元最重要的、最根本的数学思想方法是数形结合与坐标法.当然,在解决问题的过程中,数形结合、转化与化归、分类整合等思想方法也发挥着重要作用.知识点上下位关系:本单元是在学习了直线与圆的方程、椭圆、双曲线的基础上学习的,特别是抛物线与椭圆、双曲线同属圆锥曲线,其研究路径与椭圆、双曲线大致相同,是椭圆与双曲线知识的延续.育人价值:本单元的学习有助于学生学会合乎逻辑地、有条理地、严密精准地分析问题与解决问题,有助于发展学生的数学抽象、逻辑推理、数学运算、直观想象、数学建模等方面的素养.教学重点:抛物线的概念、标准方程与简单几何性质.二、目标和目标分析(一)单元目标1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.了解抛物线的定义、几何图形和标准方程,以及它的简单几何性质.3.了解抛物线的简单应用.(二)目标解析达成上述目标的标志是:1.通过实例(抛物运动轨迹、探照灯反射镜面、卫星接收天线),知道抛物线在生产生活中有广泛应用.2.通过实际绘制抛物线的过程认识抛物线的几何特征,给出椭圆的定义.能类比椭圆、双曲线的方法,通过建立适当的坐标系,得到抛物线的标准方程.能在直观认识抛物线的图形特点的基础上,用抛物线的标准方程推导出抛物线的范围、对称性、顶点、离心率等简单几何性质.能用抛物线的定义、标准方程及简单几何性质解决简单的问题.能通过抛物线与方程的学习,进一步体会建立曲线的方程、用曲线的方程研究曲线性质的方法.3.通过将关于抛物线的实际问题转化为关于抛物线的数学问题,运用抛物线的定义、标准方程及简单的几何性质解决关于抛物线的数学问题,从而解决关于抛物线的实际问题,发展数学建模素养.类比用直线方程与圆、椭圆、双曲线的方程研究直线与圆、椭圆、双曲线的位置关系,用直线方程与抛物线的标准方程研究直线与抛物线的位置关系,知道直线与抛物线的公共点个数与直线的方程和抛物线的标准方程组成的方程组的解的个数的关系,从而体会用方程研究曲线的方法.三、教学问题诊断分析1.学生对坐标法已有了比较深的认识,通过前面直线、圆、椭圆、双曲线方程的学习,对用坐标法研究曲线的基本思想方法有了了解,但是,在建立抛物线方程的时候,如何建立坐标系是第一个教学问题.在教学中,应明确“适当”的“标准”是所得方程简单,能较好的反应曲线的性质,适当的方法是尽可能使曲线关于原点及坐标轴对称.观察抛物线知道,它具有对称性,并且过定点垂直于定直线的直线就是它的对称轴,在此基础上建立适当坐标系,通过对比几种建系的方程得出最简的.2.在掌握了开口方向向右的抛物线的标准方程之后,再考虑开口方向向左、向上、向下的抛物线的标准方程,是第二个教学问题.教学中,应通过类比来建坐标系得出方程.3.在研究抛物线的几何特征时,对于焦点弦问题,是第三个教学问题.在教学过程中,抓住两个方面——一元二次方程根与系数的关系及抛物线的定义,就能解决问题.4.在研究直线与抛物线的位置关系时,通过联立直线方程与抛物线方程得方程,由此判断直线与抛物线的位置关系,是第四个教学问题.在教学时,联立方程消元后,要注意二次项系数是否可以为0,要分类讨论.教学难点:(1)发现抛物线几何特征;(2)直线与抛物线的位置关系.四、教学支持条件分析学生已经学习了直线、圆、椭圆与双曲线,对解析几何的用坐标法研究曲线的基本思想与方法有了比较深入的了解.在本单元的教学中,充分运用网络画板的动态演示效果,包括演示圆锥曲线的统一定义、抛物线的几何特征、抛物线的简单几何性质、直线与抛物线的位置关系.五、课时教学设计本单元共3课时,具体分配如下:第1课时,抛物线及其标准方程;第2课时,抛物线的简单几何性质(一);第3课时,抛物线的简单几何性质(二).。
抛物线的定义和标准方程说课稿(优秀版)word资料抛物线的定义和标准方程说课稿一、教学背景分析1.本节课的教学指导思想与理论依据本节课的教学指导思想是努力挖掘教材的内涵美妙之处,充分发挥其功能,不仅使学生掌握抛物线的概念和标准方程,而且使学生分析问题、解决问题、反思修正结果的探究过程,使学生领悟到数学知识发生与发展过程中的思想方法和数学的和谐美、简洁美,培养精益求精的治学态度和勇于探索的精神。
依据是解析几何中的曲线方程理论。
2.教材分析(1)教材内容及设置依据【教材内容】本节课是人民教育出版社中学数学室编著的《普通高中课程标准实验教科书(选修)》1-1第二章§2·3抛物线及其标准方程的第一个教学课时。
【设置依据】教材内容的确定主要是根据知识的社会作用的原则(抛物线是实际生产生活中的常用曲线类型);基础性原则(抛物线是学生通过学习函数知识而熟悉的曲线);可接受性与发展性相结合的原则(既考虑学生的认识水平、接受能力和生理、心理特征,又着眼于学生的不断发展);教育作用原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观起重要作用)后继作用原则(为可持续发展打下基础);还要适当更新教学内容,逐步渗透现代数学思想。
(2)教材的地位、作用及编排依据【地位及作用】抛物线是学生通过学习函数知识而熟悉的曲线,本节课利用解析法研究抛物线的方程及其性质,可以使学生扩展过去对抛物线的认识,并在以后将三种圆锥曲线的定义统一起来。
通过本节课的学习,使学生进一步掌握求曲线方程的方法。
【编排依据】按照相应的教学参考书的要求,§2·3应共讲四课时,本节为第一课时,主要内容是推导抛物线的四种标准方程。
课本是先用作图的方法画出了开口向右的图形,然后旋转成开口向上的图形,让学生从图形上认可该曲线为抛物线,从而给出抛物线的定义,然后推导了形如y 2=2px(p>0)的标准方程。
我认为,学生刚刚学习完双曲线,学生不一定认可老师所画的图就是抛物线。
《抛物线及其标准方程》教案一、教学内容本节课的教学内容选自普通高中课程标准实验教科书,人教A版,必修5,第一章,抛物线及其标准方程。
具体内容包括:1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
二、教学目标1. 理解抛物线的定义及其图形特征,掌握抛物线的标准方程及其性质;2. 能够运用抛物线的性质解决一些简单问题;3. 培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
四、教具与学具准备1. 教具:黑板、粉笔、投影仪;2. 学具:教科书、笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:通过展示一些实际问题,如投篮、射击等,引导学生思考这些问题的背后是否存在某种数学模型。
2. 概念讲解:讲解抛物线的定义及其图形特征,让学生通过观察、思考、讨论,理解并掌握抛物线的概念。
3. 性质讲解:讲解抛物线的标准方程及其性质,引导学生通过举例、分析、归纳,掌握抛物线的性质。
4. 例题讲解:选取一些典型的例题,引导学生运用所学的抛物线性质解决问题,巩固所学知识。
5. 随堂练习:设计一些随堂练习题,让学生独立完成,检验学习效果。
6. 焦点和准线讲解:讲解抛物线的焦点和准线,让学生通过观察、思考、讨论,理解并掌握焦点和准线的作用。
7. 作业布置:布置一些有关抛物线的问题,让学生课后巩固所学知识。
六、板书设计1. 抛物线的定义及其图形特征;2. 抛物线的标准方程及其性质;3. 抛物线与坐标轴的交点;4. 抛物线的焦点和准线。
七、作业设计1. 题目:已知抛物线的标准方程为 \( y^2 = 4ax \),求证抛物线与坐标轴的交点。
答案:抛物线与x轴的交点为 (a, 0),与y轴的交点为 (0, 2a)。
2. 题目:已知抛物线的焦点为F(1,2),求抛物线的标准方程。
抛物线教学设计抛物线优质教案一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线》,详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的性质,如顶点、对称轴、焦点、准线等;3. 抛物线在实际问题中的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够分析抛物线的性质,如顶点、对称轴、焦点、准线等;3. 学会运用抛物线知识解决实际问题。
三、教学难点与重点1. 教学难点:抛物线的性质及其在实际问题中的应用;2. 教学重点:抛物线的定义、标准方程及性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 实践情景引入:利用多媒体展示抛物线在实际生活中的应用,如篮球投篮、抛物线运动等,引导学生观察并思考抛物线的特点。
2. 例题讲解:(1)抛物线的定义及标准方程;(2)抛物线的性质,如顶点、对称轴、焦点、准线等;(3)抛物线在实际问题中的应用。
3. 随堂练习:(1)判断下列图形是否为抛物线,并给出理由;(2)求抛物线 y = 2x^2 + 4x + 3 的顶点、对称轴、焦点和准线;(3)已知抛物线的顶点为(1, 3),过顶点的直线与抛物线相交于点A、B,求线段AB的中点C的坐标。
4. 小组讨论:学生分组讨论,共同解决随堂练习中的问题,教师巡回指导。
六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的性质;3. 例题解答步骤;4. 随堂练习解答。
七、作业设计1. 作业题目:(1)求抛物线 y = x^2 + 4x + 5 的顶点、对称轴、焦点和准线;(2)已知抛物线的焦点为(2, 0),求抛物线的标准方程;(3)抛物线 y = 2x^2 + 4x 3 与直线 y = x + 1 相交于点A、B,求线段AB的中点C的坐标。
2. 答案:(1)顶点:(2, 9),对称轴:x = 2,焦点:(2, 3),准线:y = 3;(2)抛物线的标准方程:y = 4(x 2)^2;(3)中点C的坐标:(1/2, 7/4)。
抛物线教案教案抛物线教学设计与实施一、教学目标1.让学生理解抛物线的定义、标准方程和基本性质,能够画出简单的抛物线图形。
2.培养学生运用数学语言表达、分析和解决实际问题的能力。
3.培养学生的空间想象能力和抽象思维能力。
二、教学内容1.抛物线的定义和标准方程2.抛物线的焦点、准线和对称轴3.抛物线的图形和性质4.抛物线在实际问题中的应用三、教学重点与难点1.教学重点:抛物线的定义、标准方程和基本性质。
2.教学难点:抛物线的图形理解和应用。
四、教学过程1.导入新课:通过生活中的实例,如抛物线运动、抛物面天线等,引导学生了解抛物线在实际中的应用,激发学生的学习兴趣。
2.探究新知:(1)抛物线的定义:以一个点为焦点,到这个点的距离等于到一条直线的距离的点的轨迹。
(2)抛物线的标准方程:y^2=4ax(开口向右)、x^2=4ay(开口向上)。
(3)抛物线的焦点、准线和对称轴:焦点为(a,0),准线为x=-a,对称轴为y轴。
(4)抛物线的图形和性质:图形为U形或倒U形,性质包括对称性、顶点、焦点、准线等。
3.实践应用:(1)画出给定焦点的抛物线。
(2)已知抛物线上的点,求抛物线的标准方程。
(3)利用抛物线的性质解决实际问题,如求抛物线与直线的交点、抛物线上的切线等。
4.总结反馈:通过课堂小结,让学生回顾本节课所学内容,巩固知识点。
五、作业布置1.课后习题:完成教材中抛物线相关习题。
2.拓展练习:研究抛物线在实际问题中的应用,如抛物线运动、抛物面天线等。
六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
同时,关注学生的学习兴趣,注重培养学生的数学思维能力和实际应用能力。
在教学过程中,注重启发式教学,引导学生主动探究,培养学生的自主学习能力。
同时,注重师生互动,鼓励学生提问,激发学生的思维活力。
在教学评价方面,采用多元化评价方式,关注学生的全面发展。
需要重点关注的细节是“实践应用”部分。
数学教案模板高中抛物线
教学目标:学生能够了解抛物线的定义、性质和应用,掌握抛物线的标准方程和一般方程,能够解决相关的计算题目。
教学重点:抛物线的定义、性质及应用。
教学难点:抛物线的一般方程及相关计算题目的解决。
教学准备:教师准备PPT、黑板、彩色粉笔、教材等。
教学过程:
一、导入
请学生回顾圆的性质,并提问什么是抛物线?抛物线有哪些性质?
二、讲解
1. 抛物线的定义:横坐标和纵坐标的平方成正比。
2. 抛物线的性质:焦点、准线、对称轴、顶点等。
3. 抛物线的标准方程和一般方程。
三、练习
1. 计算抛物线的焦点和准线。
2. 给出抛物线上一点的坐标,求该点到焦点的距离。
四、拓展
1. 抛物线与直线的交点求解。
2. 抛物线的应用:如抛物线天花板的设计、射击运动等。
五、总结
让学生总结抛物线的性质和方程,并强化知识点。
六、作业
1. 完成教材上相关练习题。
2. 仿照课堂上的例题,设计自己的抛物线计算题目。
教学反思:本节课内容涵盖抛物线的定义、性质、方程以及应用,教师应注重学生的实际运用能力和分析问题的能力,通过讲解、训练和练习,帮助学生掌握相关知识。
抛物线的教学设计完整版课件一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线及其性质》。
详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的几何性质,如焦点、准线、对称轴等;3. 抛物线在实际问题中的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够运用抛物线的几何性质解决相关问题;3. 培养学生的空间想象能力和解决问题的能力。
三、教学难点与重点教学难点:抛物线的几何性质的理解和应用。
教学重点:抛物线的定义、标准方程及几何性质。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:直尺、圆规、量角器、抛物线模型。
五、教学过程1. 实践情景引入利用抛物线模型,让学生观察并思考抛物线在实际生活中的应用,如篮球投篮、卫星通信等。
2. 知识讲解(1)抛物线的定义及标准方程(2)抛物线的几何性质(3)抛物线在实际问题中的应用结合实例,讲解抛物线在现实生活中的应用。
3. 例题讲解(1)求抛物线的焦点和准线;(2)已知抛物线上一点,求该点到焦点的距离;(3)求解抛物线与直线的交点问题。
4. 随堂练习配合例题,让学生进行课堂练习,巩固所学知识。
六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的几何性质;3. 例题解答步骤;4. 随堂练习题目。
七、作业设计1. 作业题目:(1)求抛物线y = 4x^2的焦点和准线;(2)已知抛物线y = 2x^2 + 4x + 5上一点P(1,7),求点P到焦点的距离;(3)求解抛物线y = x^2与直线y = 2x + 3的交点。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义、标准方程及几何性质掌握情况,对例题的解答是否熟练;2. 拓展延伸:引导学生探究抛物线在物理学、天文学等领域的应用,提高学生的跨学科素养。
重点和难点解析需要重点关注的细节包括:1. 抛物线几何性质的理解和应用;2. 例题的选取和讲解;3. 作业设计中的题目难度和答案解析;4. 课后反思及拓展延伸的深度和广度。
抛物线及其标准方程” 单元讲课方案(选自人教版高中数学第二册(上)第八章第五节)一、教材解析1.在教材中的地位与作用(1)抛物线在初中以二次函数图象的形式初步商讨过,在物理上也研究过“抛物线是抛体的运动轨迹” ,这些足以说明抛物线在本质生活中应用的广泛性,在这一带里我们将更深入地研究抛物线的定义及其标准方程。
(2)抛物线是在学习了椭圆、双曲线的基础上研究的又一种圆锥曲线,它是以圆锥曲线统必定义(即第二定义)进行张开学习的,由此形成了圆满的圆锥曲线看法系统。
本章对抛物线的安排篇幅不多,但与椭圆、双曲线的地位是相同的。
利用抛物线定义推出抛物线标准方程,为此后用解析法研究抛物线的几何性质,本节起到一个承上启下的作用。
(3)本节可经过类比的思想,由椭圆与双曲线的第二定义顺利得出抛物线及其焦点与准线的定义,接下来用轨迹思想建立合适坐标系求出抛物线的标准方程,一共有四种(开口向上、向下、向左或向右),在讲课过程中应重视标准方程中的“ P”,P 的几何意义以及焦点坐标、标准方程与 P 的关系是本节的要点,学生应掌握如何依据标准方程求P,焦点坐标与准线方程或依据三者求标准方程。
2.教材的编排系统解析教材内容表现的序次是:回顾椭圆与双曲线的第二定义(P132练习2)依据e=1的几何意义设计试验活动抛物线的定义轨迹思想推导抛物线的标准方程总结抛物线标准方程及相关看法标准方程的直接运用(例1、 P132 练习 1、 3、 4, P133习题 1、2、4)抛物线定义的灵巧运用及定义法求解轨迹方程(例2、 P132 练习 5、P133 习题 3、)抛物线焦点弦长解析(例3、 P133 习题 7)直线与抛物线关系分析( P133 习题 5、 6)3.例习题解析与教材发掘①教材在编排中特别是 P132 练习 2 的设计本质上已经表现了圆锥曲线统必定义这一假想,所以在总结中没关系明示这一知识的整合结论。
②定义的讲课中联合椭圆、双曲线定义中简单被忽视的条件的回顾,思虑教材定义表达中的不慎重性(应要求:定点 F 不在定直线l上),借此培育学生类比思想能力及慎重的思想意识。
2.4.1 抛物线及其标准方程一、三维目标(一)知识与技能(1)掌握抛物线的定义、几何图形(2)会推导抛物线的标准方程(3)能够利用给定条件求抛物线的标准方程(二)过程与方法通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
并进一步感受坐标法及数形结合的思想。
(三)情感态度与价值观进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度;激发学生积极主动地参与数学学习活动,养成良好的学习习惯;同时通过欣赏生活中一些抛物线型建筑,不但加强了学生对抛物线的感性认识,而且使学生受到美的享受,陶冶了情操。
二、教学重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导四、教学过程1.课题引入(投影)大家看到什么?足球运行的轨迹是一条抛物线,人跳水的的轨迹也是一条抛物线,在生活中还有很多抛物线的影子。
师:那么,数学中如何定义抛物线,如何研究抛物线?这就是我们今天要学习的内容。
(板书课题:2.4.1 抛物线及其标准方程)类比椭圆和双曲线的学习,我们知道,研究圆锥曲线先画出曲线、再根据曲线的几何特征得出定义、然后建立适当的坐标系推出标准方程,最后通过方程研究曲线的几何性质,今天我们依然按照这条路线来探讨抛物线。
(板书:1、画法;2、定义;3、标准方程)1、抛物线的画法(flash)我们先来看抛物线是如何画出来的?看投影,把直尺固定在画板上,三角板的一条直角边紧靠直尺的边缘;截取一段绳子,在画板上的一定点F;用铅笔拉直绳子,然后使三角板紧靠着直尺上下滑动,这样铅笔就画出一条曲线,这条曲线就是一条抛物线。
2.抛物线的定义观察图形中的线段关系,你能发现动点M满足的几何条件吗?(学生观察画图过程)想一想:设AH=a,那么+ =a,还有+ =a 我们发现|MH|=|MF|,其中|MH|是动点M 到定直线l的距离,|MF|是动点M到定点F的距离;(演示)动点M随着三角板运动的过程中可以发现,始终有|MH|=|MF|,即动点M与定点F和定直线l的距离相等。
抛物线的教学设计完整版课件一、教学内容本节课的教学内容选自人教版高中数学必修二第七章第二节,主要包括抛物线的定义、标准方程、性质及其应用。
具体章节内容如下:1. 抛物线的定义:通过实际情景引入抛物线,引导学生探究抛物线的几何特征,得出抛物线的定义。
2. 抛物线的标准方程:引导学生根据抛物线的定义,推导出抛物线的标准方程,并掌握方程的变换。
3. 抛物线的性质:分析抛物线的几何性质,如焦点、准线、顶点等,并能运用性质解决问题。
4. 抛物线的应用:通过例题讲解,让学生学会利用抛物线解决实际问题,如抛物线上的点到焦点的距离等。
二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程及其变换。
2. 掌握抛物线的性质,并能运用性质解决实际问题。
3. 培养学生的逻辑思维能力和数学表达能力。
三、教学难点与重点1. 抛物线的定义及其几何特征。
2. 抛物线的标准方程及其变换。
3. 抛物线的性质及应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、笔记本、三角板、尺子。
五、教学过程1. 引入:通过实际情景,如抛物线形的操场、篮球筐等,引导学生观察并提出问题,激发学生对抛物线的兴趣。
3. 推导抛物线的标准方程:引导学生根据抛物线的定义,利用几何方法推导出抛物线的标准方程,并掌握方程的变换。
4. 分析抛物线的性质:引导学生运用数学方法分析抛物线的性质,如焦点、准线、顶点等,并通过例题讲解,让学生学会运用性质解决问题。
5. 抛物线的应用:让学生通过实际问题,运用抛物线的性质解决问题,巩固所学知识。
6. 课堂练习:布置随堂练习,让学生巩固本节课所学知识。
六、板书设计1. 抛物线的定义。
2. 抛物线的标准方程及其变换。
3. 抛物线的性质及其应用。
七、作业设计1. 请用一句话概括抛物线的定义。
2. 请写出抛物线的标准方程,并说明其变换规律。
3. 分析下列抛物线的性质,并解答相关问题:(1)抛物线y = x² 的焦点坐标是多少?(2)抛物线y = 1/4x² 的准线方程是什么?(3)点 P(2, 3) 是否在抛物线y = x² 上?说明理由。
抛物线(第1课时)北京师范大学附属实验中学李扬眉一、教学内容分析本节课是人教版《普通高中课程标准实验教科书•数学选修2-1》第二章“圆锥曲线与方程”的起始课.解析几何的教学,一方面,应从几何角度关注图形,认识图形的几何特征;另一方面,要建立代数方程,用代数工具研究几何性质.在这一章的教学中,我们在引入代数工具研究圆锥曲线之前,让学生首先充分认识图形,尽可能充分地感受并发现几何特征,进而体会解析几何数形结合、几何与代数并重的特点.考虑到抛物线的形状学生比较熟悉,其代数方程形式也相对简单,我们将抛物线作为研究的第一种圆锥曲线.本节课是抛物线的第1课时,也是圆锥曲线这一章的起始课,主要内容是借助几何绘图软件,探索抛物线的轨迹,引出抛物线的定义,直观感受、发现抛物线的几何特征.在这个过程中,学生学习和运用轨迹交点法,提升作图能力,感悟解决问题的策略.我们将在第2,3课时建立坐标系求抛物线的方程、研究性质、完善并证明第一节课发现的几何特征.二、学生情况分析学生在初中阶段学习过一些特殊的轨迹,有一定的作图能力;初步了解几何绘图软件Geogebra,能根据需要进行简单操作.另外,授课班级的学生具有较强的求知欲,思维活跃,能积极参与数学活动和交流讨论.三、教学目标设置根据教学内容,以及学生现有的认知水平和能力,我把本节课的教学目标确定为以下三个方面:1. 了解抛物线的定义,感知抛物线的几何特征;2. 运用轨迹交点法,经历探索抛物线轨迹的过程,提高作图能力和分析问题、解决问题的能力;3. 通过合作学习,感受数学探索的快乐.本节课的教学重难点是:依据抛物线的定义画出轨迹.四、教学策略分析本节课以探究合作为主要的学习方式,教学过程分为“复习旧知,提炼作图方法”,“应用方法,合作探索轨迹”,“明确定义,感知几何特征”,“交流总结,提出思考问题”四个环节.为了突破难点,落实重点,采取了以下措施:首先,让学生使用几何绘图软件Geogebra 画出“到两定点距离相等的点的轨迹”,并总结出利用轨迹交点法得到轨迹的基本步骤.其次,在此基础上,再让学生利用软件,用不同方法得出抛物线的完整轨迹.随即,让学生在纸上作出抛物线草图,进一步加深对抛物线的直观认识.最后,让学生分享从中发现的抛物线的几何特征,也为后续课程的学习打好基础.本节课的效果评价以当堂反馈为主,学生通过上台展示分享,体现探索的成果;每位学生在纸上作出抛物线的草图,落实本节课的教学要求.教师还将通过思考题继续激发学生的探究热情.五、教学过程环节一:复习旧知,提炼作图方法 预设形式预案设计意图 【复习】回顾有关轨迹的问题:(1) 平面内,到一个定点的距离等于定长的点的轨迹是什么?(答:以定点为圆心,定长为半径的圆)(2) 平面内,到一条定直线的距离等于定长的点的轨迹是什么?(答:平行于这条直线,并和已知直线距离为定长的两条直线)(3) 平面内,到两个定点距离相等的点的轨迹是什么?(答:两个定点连线的垂直平分线)【活动一】请利用图形计算器,探索:平面内,到两个定点的距离相等的点的轨迹.1, 以A 为圆心,r 为半径作圆 2, 以B 为圆心,r 为半径作圆3, 作出两圆交点,即为所求轨迹上的点 4, 改变r 的值,形成轨迹【总结方法】利用轨迹交点法得到轨迹的步骤:当知道轨迹上的点满足的两个条件时,可以采用这样的方法得到轨迹:教师提问和展示,学生口答. 学生在图形计算器上探索, 并分享得到轨迹的过程. 学生能顺畅回答. 教师可适当规范表述. 若学生通过找到两点直接连线得轨迹,则提示其思考如何得到更多的点,来验证轨迹是一条直线.通过回顾已认识的一些轨迹,引出要探索的新问题,也为后面问题的解决奠定基础.通过活动一,让学生在操作中学习如何利用轨迹交点法得到轨迹. 为后续探索作准备.1,作出与定直线平行,且距离为2,作出以定点为圆心,以r为半径的圆.3,平行线与圆的交点就是所求轨迹上的点.1. 在定直线上任找一点H ,以H 为垂足作定直线的垂线2. 作定点和点H 连线的垂直平分线3. 垂线和垂直平分线的交点即为所求轨迹上的点4. 改变H 的位置,追踪点的位置变化,得到轨迹方法二如果学生探索有困难,则提示其可以在垂线上找点.方法二是在定直线的垂线上找点.两种方法都是利用轨迹交点法,同时学生在寻找轨迹的过程中,也体会到转化的思想.环节三:明确定义,感知几何特征 预设形式预案 设计意图 【定义】平面内,与一个定点和一条定直线( )距离F l F l 相等的点的轨迹,叫做抛物线.其中点叫做抛物线的焦点,直线 叫做抛物线的F l 准线.辨析:若定点在定直线上时,则所求轨迹(轨迹为:过定点的已知直线的垂线)不是抛物线【活动三】在纸上画出已知焦点和准线的抛物线.学生叙述,教师板书 学生尝试用铅笔画出点的轨迹,分享画法,展示轨迹.定点不在定直线上这一条件学生易忽略,可引导学生辨析清楚离开软件支持,回到常规作图: 在徒手作图的过程中提升作图能力,加深对抛物线的认识.。