风机液力耦合器培训
- 格式:doc
- 大小:112.00 KB
- 文档页数:5
液力耦合器一、液力耦合器的名词解释二、液力耦合器的工作过程三、液力耦合器的油系统四、勺管的调节原理五、液力耦合器的运行知识六、液力耦合器的特点七、液力耦合器运转的注意事项一、液力耦合器的名词解释以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
如图:液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
二、液力耦合器的工作过程液力耦合器主要由泵轮、涡轮、转动外壳、主动轴及从动轴等构件组成,见图8—10。
液力耦合器和传动齿轮安装在一个箱体内,功率传输从电动机到液力耦合器,再传到泵上。
泵轮装在与原动机轴相连的主动轴上(或第一级增速齿轮轴上),相当于离心泵的叶轮;涡轮装在与泵相连的从动轴上(或第二级增速齿轮轴上),相当于水轮机的叶轮,两轮彼此不接触,相互之间保持几毫米的轴向间隙,不能进行扭矩的直接传递。
泵轮和涡轮的形状相似,尺寸相同,相向布置,合在一起很像汽车的车轮,分开时均为具有20~40片径向直叶片的叶轮,涡轮的片数一般比泵轮少1~4片,以避免产生共振。
这种叶轮的后盖板及轮毂在轴面上形成两个对称的碗状投影,且与叶片共同组成沿圆周对称分布的几十个凹形流道,称为工作腔。
每个工作腔的进、出口均沿轴向,且在叶轮同侧,运行时工作油就在两轮的凹形工作腔内循环流动。
为防止工作油泄漏,一般在泵轮外缘还用螺栓连接旋转外壳,将涡轮密封在壳内。
泵轮和涡轮形成的工作油腔内的油自泵轮内侧引入后,在离心力的作用下被甩到油腔外侧形成高速的油流,并冲向对面的涡轮叶片,驱动涡轮一同旋转。
德国福伊特液力偶合器培训要点补充1. 液力偶合器的产生:是德国人盖尔曼·费丁格尔教授在1905年发明的。
2. 液力偶合器的作用:具有轻载启动,过载保护、减缓冲击、隔离扭振、协调多动力机均衡驱动。
3. 液力偶合器传递功率的能力与其输出转速的立方成正比,故转速降低1/2 ,传递功率就降低为1/8。
故不能用于双速电机的低速启动。
4. 液力偶合器充液率对特性的影响,在规定充液范围内充液量越多,传递功率越大,反之则小;在外载荷一定时,充液率越高,则转差率小,输出转速高,发热量低,反之---。
5. 对液力偶合器外观的认识:650TWVF液偶有两个加液塞(黑颜色,对称设计);四个外端涂有黄色标记的为易熔塞(熔化温度为110℃);一个视镜,一个盲堵。
视镜,盲堵,易熔塞位置不能随便更换。
6. 加液塞作用:是加入工作液体时使用。
拆开时用19#套筒扳手,要求拧紧力矩为80NM,不可用力太大,否则会造成底扣损坏,用力偏小时,液偶高速旋转会造成液体洒出,当液量减少到一定度时会造成喷塞。
7. 易熔塞作用:当工作机卡阻后,电动机还会维持高速旋转,此时给液偶输入的机械动能就会转化为液体介质热能,当温度上升到易熔塞的熔解温度时,易熔塞喷塞释放能量,很好地为原动机进行了过载保护。
拆开时用24#套筒,要求拧紧力矩为50NM,不可用力太大,否则会造成底扣损坏,用力偏小时,液偶高速旋转会造成液体洒出,当液量减少到一定度时会造成喷塞。
喷塞后的处理方法,一定要将此次喷塞液偶上的四个易熔塞全部进行更换。
必须使用福伊特原产易熔塞。
严禁使用国产易熔塞,或用木棒将孔塞住继续使用。
否则,造成后果责任自负。
8. 视镜的作用,对液偶充液量的检查。
不得与盲堵调换位置。
9. 日常维护要点:⑴检查罩筒内部,保持干净。
不得放有杂物(如工具,螺栓,或废弃的易熔塞)。
⑵检查ENK半联轴器的弹性元件是否损坏,联轴器轴向、径向间隙有无变化。
⑶检查液偶外观是否良好。
液力耦合器知识学习(比较不错的资料)推荐结合下面链接推文能掌握更多:分享!液力耦合器原理及油路流程详解1.液力偶合器液力偶合器用来对高速的工业机器进行无级调速控制,偶合器的主体部分与增速齿轮合并在同一个箱体中,箱体的下部分作为油箱。
2.液力偶合器基础知识2.1.液力偶合器的主要构造:液力偶合器主要由泵轮、涡轮和转动外壳组成。
它们形成了两个腔室,工作腔:泵轮和涡轮之间的腔室;副油腔:涡轮与转动外壳腔室。
一般泵轮和涡轮内装有20~40片径向辐射形叶片,副油腔壁上亦装有叶片或开有油孔、凹槽。
2.2.液力偶合器的泵轮和涡轮的作用泵轮:偶合器的泵轮是指和电动机轴连接的主动轴上的工作轮,其功用是将输入的机械功转换为工作液体的动能,即相当于离心泵叶轮,故称为泵轮。
涡轮:偶合器的涡轮是指和被驱动设备连接的从动轴上的工作轮,其功用是将工作液体的动能还原成机械功,并通过被动轴驱动负载。
泵轮与涡轮具有相同的形状、相同的有效直径(循环圆的最大直径)只是轮内径向辐射形叶片数不能相同,一般泵轮与涡轮的径向叶片数差1~4片,以避免引起共振。
2.3.液力偶合器中工作油的动力传递:在泵轮与涡轮间的腔室中充有工作油,形成一个循环流道;在泵轮带动的转动外壳与涡轮间又形成了一个油室。
若主轴以一定转速旋转,工作油腔中的工作液体由于泵轮叶片在旋转离心力的作用下,将工作油从靠近轴心处沿着径向流道向泵外周处外甩升压,在出口处以径向相对速度与泵轮出口圆周速度组成合速,冲入涡轮外圆处的进口径向流道,并沿着涡轮径向叶片组成的径向流道流向涡轮,靠近从动轴心处,由于工作油动量距的改变去推动涡轮旋转。
在涡轮出口处又以径向相对速度与涡轮出口圆周速度组成合速,冲入泵轮的进口径向流道,重新在泵轮中获取能量,泵轮转向与涡轮相同,如此周而复始,构成了工作油在泵轮合涡轮间的自然环流,从而传递了动力。
2.4.偶合器的油循环:2.5.偶合器的调速原理、调速的基本方法:在泵轮转速固定的情况下,工作油量愈多,传递动转距也愈大。
培训记录
培训时间:2011年2月16日
培训地点:设备部机务班组
授课人:王峰
参加培训人员:戴震、李祥、隋志毅、苏研、张和、张大伟、田永、杨飞、王峰、黄银银、王冠、陈辉、王宏刚、李明涛、范明乐、李治平、孙健、杨海龙、田磊、石云柱、徐春鹏、朱宗辉、李绍京、傅晓荣、刘陆杰、金祝、尹若军、潘述道
培训内容:风机液力耦合器培训
1、了解我厂二次风机及引风机液力耦合器内部结构
2、增加检修工对该设备的熟悉程度及判断事故时的准确性
培训目的:通过学习使检修人员能够熟练掌握我厂二次风机及引风机使用的液力耦合器内部结构,对设备认识更加清楚,在设
备出现故障时能够准确,及时的处理事故。
液力耦合器
(一)液力耦器的结构:
液力耦合器是一种液力传动装置,又称液力联轴器。
液力耦合器其结构主要由壳体、泵轮、涡轮三个部
泵轮和涡轮相对安装,统称为工作轮。
在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。
两者之间有一定的间隙(约 3mm 一 4mm ) ;泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。
(二)液力耦合器的安装方式:
液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。
涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。
在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。
(三)液力耦合器的工作原理:
电动机运行时带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在受到液压油冲击力而旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘,然后又被泵轮再次甩向外缘。
液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。
液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。
液压油循环流动的产生,是泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差。
液力耦合器工作时,电动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。
液压油在循环流动的过程中,除受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。
根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,这就是液力耦合器的工作原理。
(四)、液力耦合器的调速方法:
液力耦合器在实际工作中的情形是:电动机驱动泵轮旋转,泵轮带动液压油进行旋转,涡轮即受到力矩的作用,在液压油量较小时,当其力矩不足于克服载的起步阻力矩,所以涡轮还不会随泵轮的转动而转动,增加液压油,作用在涡轮上的力矩随之增大,作用在涡轮上的力矩足以克服负载起步阻力而起步,其液压油传递的力矩与负载力矩相等时,转速随之稳定。
负载的的力矩和转速成平方比,当随着液压油量的增加,输出力矩加大,涡轮的转速随之加大,达到调节转速的目的。
油液螺旋循环流动的流速 VT 保持恒定, VL 为泵轮和涡轮的相对线速度, VE 为泵轮出口速度, VR 为油液的合成速度。
涡轮高速转动,即输出和输入的转速接近相同时小,而合成速度 VR 与泵轮出口速度之的夹角很大,这使液流对涡轮很小,这将使输出元件滑动,速度降低。
当将油液量加大,相对速度 VL 和合成速度 VR 都很这就使液流对涡轮叶片的推力变得直到有足够的循环油液对涡轮产生足够的冲击力,输出转速变高。
(四)液力耦合器的转换效率:
液力耦合器调速原理表明,传动速度的改变,实质是机械功率调节的结果。
因此液力耦合器输出转速的降低,实际是输出功率减小。
在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。
液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,对于平方转矩负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。
同时在运行中耦合器排油温度高一般勺管位置是在50%左右最高,因为这时涡轮中的油有一半,涡轮与泵轮介面摩擦产生热量大,勺管位置低时涡轮中油少,泵轮与涡摩擦产生的热量虽然大,冷油器可以冷却,勺管位置高时滑差率小,所以排油温度不高一般偶合器的工作冷油器的冷却水门是不调节的,故而低转速时产生的热量是可能通过冷油器带走的,故而随着转速的升高,工作油温是不断增加的。
但随着转速的提高,工作油的循环量也增加了,因此工作油有一个高温点,在高温点,液力耦合器的损耗最大。
液力耦合器的性能特点:
(1)应用范围:
--- 调速范围宽,可实现从零调节。
--- 没有电气连接,可工作于危险场地,对环境要求不高。
(2)技术成熟:
--- 结构简单,操作方便。
--- 多年研究,结构合理。
--- 全部国产化,维修方便。
(3)性能指标:
--- 价格便宜,对精度要求低
--- 能量转换效率低。
--- 结构简单,故障率低。
--- 运行时需加专用的冷却系统。
--- 液压油老化后定时更换。
三、变频装置和液力耦合器的优缺点比较:
(一)、节能效果:
1、变频装置节能效果好,功率因数高
2、液力耦合器节能效果低,在低速时,有近3/4的能量被浪费。
大容量的设备还应添加水冷系统。
(二)、安装方式:
1、变频装置安装方便,电机和负荷不动,将其加入电源侧即可。
2、液力耦合需装在电机和负荷中间,在安装时需将电机移位方能安装。
(三)、安全性:
1、变频装置在出现问题后,可以进行旁路的方式运行。
2、液力耦合器出现间题后,必需停机维修。
(四)、运行精度:
1、变频运行精度高,可以实现精确调节,速度是由输出频率限定,当负荷出现波动时,转速不变。
2、液力耦合器靠油量和负荷的拉动调速,调速精度低,当负荷变化时,转速随之变化。
(五)、维护费用:
1、变频调速维护费用低,在设备正常运行时无消耗品。
2、液力耦合器在运行一定时间后,对液压油进行更换。
(六)、操作性:
1、变频调速操作复杂,需要对操作人员进行专门的培训。
2、液力耦合器操作简单,方便。
(七)、经济性:
1、变频调速装置价格昂贵。
2、液力耦合器价格便宜。