第九章 运筹学博弈论
- 格式:ppt
- 大小:424.50 KB
- 文档页数:76
博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。
即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。
1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。
1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。
两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。
倘若不能,则称非合作博弈(Non-cooperative game)。
合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。
目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。
博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。
把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。
博弈论和运筹学
博弈论和运筹学是两个与决策和优化相关的学科,尽管它们有一些共同点,但也存在明显的区别。
博弈论(Game Theory)是研究决策者在相互作用下做出决策的数学理论。
它研究以多方参与的决策情境为基础的策略选择和决策过程。
博弈论主要关注决策者的利益、策略和收益,并考虑不同决策者之间的相互依赖关系。
博弈论被广泛应用于经济学、管理学、政治学等领域,用于分析和解决与决策者的冲突、合作、竞争相关的问题。
与之相比,运筹学(Operations Research)是一个研究如何最优地利用有限资源来解决实际问题的学科。
运筹学涉及数学建模、优化算法、模拟等方法,以帮助决策者做出最佳的决策。
它在多个领域中应用广泛,如供应链管理、生产调度、库存控制等。
运筹学通过分析问题的结构、建立数学模型并运用数学优化方法,提供了一种系统化的方法来解决复杂的决策问题。
尽管博弈论和运筹学都关注决策和优化,但它们的重点和方法有所不同。
博弈论注重决策者之间的竞争和合作关系,研究决策者如何做出最佳策略。
而运筹学则注重如何通过有效地分配资源和优化决策,来解决特定的问题,并达到最佳结果。
因此,博弈论和运筹学可以被看作是从不同角度和层面来研究决策和优化的学科。
第章博弈论(对策论)第一节引言1.1博弈行为和博弈论在日常生活中,经常会看到一些相互之间具有斗争或竞争性质的行为。
譬如,两个人下棋,任何一个人在走某一步之前,都需要考虑对方是怎么走的,以及对方在他走了一步之后会怎么走,以至无穷。
高手与俗手的区别往往就在于高手能够考虑10步甚至20步以后的变化,最终的输赢不仅取决于你的决策,而且取决于你对手的决策,这就是博弈。
博弈与决策的根本区别在于是否考虑对方的行为,具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标和利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最有利或最合理的方案。
比如战争活动中的双方,都力图选取对自己最有利的策略,千方百计去战胜对方;还比如在政治方面,国际间的谈判、各种政治力量间的较量、各国际集团之间的角逐等都无一不具有对抗性质;在经济活动中,各国之间、各公司企业之间的经济谈判,企业之间为争夺市场而进行的竞争等,举不胜举。
博弈论(game theory),就是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的理论与方法,即研究博弈行为中竞争各方是否存在着最合理行动方案,以及如何找到最合理行动方案的数学理论和方法。
也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题。
博弈论应是一种分析问题的方法,它被设计用来帮助我们理解所观察到的决策主体相互作用时的现象,其应用范围涉及经济学、政治学、犯罪学、军事、外交、国际关系、公共选择等各个领域。
博弈论思想的主要特征是各参与人所实施的行为方案(策略)相互依存,各方在冲突或合作后所实现的损益得失结果不仅取决于自己所采取的行为方案,同时也依赖于其他参与方所实施的行为方案,是各参与方行为方案组合的函数。
所以,博弈论在我国也被称为“对策论”。
“博弈论”阅读及答案阅读下面文字,完成6-8题。
“博弈论”是运筹学的一个分支,它是钻研个体如何在扑朔迷离的相互影响中得出最公道的策略的一种理论。
“博弈”这一说法是从棋弈、扑克和战争等带有比赛、抗衡和决策性质的问题中借用的术语,听上去有点玄奥,实际上却拥有首要现实意义。
博弈论巨匠看经济社会问题如同棋局,往往寓深入道理于游戏当中。
所以,博弈论多从咱们日常生活中的凡人小事入手,娓娓道来,其实不乏味。
在博弈论中,有一个著名的“阶下囚窘境”博弈模型。
假定一名富翁在家中被杀,财物被盗。
警方抓到两个犯罪嫌疑人,并从他们的住处搜出赃物。
然而,他们矢口否认曾杀过人。
因而警方将两人隔离落后行审判。
检察官给出以下条件:因为你们的偷窃罪已有确实的证据,所以可以判你们一年刑期。
然而,如果你单独坦白杀人的罪恶,我只判你三个月的监禁,但你的同伙要被判十年刑。
如果你拒不坦白,而被同伙检举,那末你就将被判十年刑,他只判三个月的监禁。
然而,如果你们两人都坦白交待,那末,你们都要被判五年刑。
两个囚犯面临着两难的选择——坦白或抵赖。
明显最好的策略是双方都抵赖,结果是大家都只被判一年。
然而因为两人在隔离的情况下没法串供,所以,每一个人都从利己的目的动身,选择坦白交待这一最好策略。
因为坦白交待可以指望得到最短的监禁,但条件是同伙抵赖,这明显比自己抵赖坐十年牢要好。
这种策略是损人利己的策略。
不仅如斯,坦白还有更多的益处。
如果对方坦白了而自己抵赖了,那自己就得坐十年牢。
因而,在这种情况下仍是应当选择坦白交待,即便两人同时坦白,最多也只判五年。
所以,两人公道的选择是坦白,本来对双方都有益的策略(抵赖)和终局(被判一年刑)就不会呈现。
在这个“阶下囚窘境”中,每一个局中人选择了自己的最优策略,从而使自己利益最大化。
所有局中人的策略形成了一个最优的策略组合,没有人有足够理由打破这种均衡。
这种由所有局中人(也称当事人、参与者)的最好策略形成的战略组合,被称为“非合作博弈均衡”,也叫“纳什均衡”①。