高分子化学与物理-聚合物的结晶态
- 格式:ppt
- 大小:4.59 MB
- 文档页数:63
构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列柔性:高分子链中单键内旋的能力;高分子链改变构象的能力;高分子链中链段的运动能力;高分子链自由状态下的卷曲程度。
链段:两个可旋转单键之间的一段链,称为链段影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。
2一般分子链越长,构象数越多,链的柔顺性越好。
3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。
分子链的规整性好,结晶,从而分子链表现不出柔性。
控制球晶大小的方法:1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶;3外加成核剂,可获得小甚至微小的球晶。
聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。
结晶的必要条件:1内因:化学结构及几何结构的规整性;2外因:一定的温度、时间。
结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶;3分子量:M小结晶速度块,M大结晶速度慢;熔融热焓?H m:与分子间作用力强弱有关。
作用力强,?H m 高熔融熵?S m:与分子间链柔顺性有关。
分子链越刚,?S m小聚合物的熔点和熔限和结晶形成的温度T c有一定的关系:结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。
取向:在外力作用下,分子链沿外力方向平行排列。
聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。
高分子物理1.高聚物的球晶() *A.一定呈球状B.是多晶聚集体(正确答案)C.是在搅拌下生成的D.一般是由熔体冷却时形成的(正确答案)E.是在稀溶液中形成的2.聚合物熔体在高温高压下结晶,生成()晶体。
[单选题] *A.伸直链(正确答案)B.串晶C.片晶D.单晶3.浓溶液边搅拌边结晶生成() [单选题] *A.伸直链B.串晶(正确答案)C.片晶D.单晶4.高聚物在稀溶液中极缓慢冷却结晶时,可以成()这种结晶形态。
[单选题] * A.伸直链B.串晶C.单晶(正确答案)D.球晶5.从熔体冷却结晶时,倾向于生成()结构。
[单选题] *A.伸直链B.串晶C.单晶D.球晶(正确答案)6.熔体在应力作用下结晶时,通常形成()结构。
[单选题] *A.伸直链B.串晶(正确答案)C.单晶D.球晶7.高聚物熔体结晶的温度范围是从()到( B )之间,结晶过程包括( C )。
[单选题] *A.Tg(正确答案)B.TmC.晶核开线和晶粒生长8.高聚物的结晶度增加,则() [单选题] *A.抗冲击强度增加B.抗张强度增加(正确答案)C.取向度增加D.透明性增加9.增加高聚物结晶度xc可采取的有效措施有()( B )等。
[单选题] *A.Tmax下长期结晶(正确答案)B.退火处理C.加成检剂D.降低结晶温度10.欲减小环晶半径可采取()( D )等措施。
[单选题] *A.Tmax下长期结晶B.退火处理C.加成核剂(正确答案)D.降低结晶温度11.晶体中分子链不呈平面锯齿形构象的高聚物是()。
[单选题] * A.PVA(聚烯醇)B.PEC.PAD.聚四氟乙烯(正确答案)12.呈螺旋形构象的高聚物有() *A.等规聚丙烯(正确答案)B.PEC.PAD.聚四氟乙烯(正确答案)13.下列聚合物中柔顺性最好的是() [单选题] *A.聚乙烯(正确答案)B.聚丙烯C.聚氯乙烯D.聚苯乙烯14.下列聚合物中柔顺性最差的是() [单选题] *A.聚甲基丙烯酸甲酯B.聚甲基丙烯酸乙酯C.聚甲基丙烯酸丙酯D.聚甲基丙烯酸丁酯(正确答案)15.高分子显示出柔性,是由于具有运动单元()。
华东理工大《810高分子化学和物理》考研真题库一、华东理工大学高分子化学和物理考研真题二、配套高分子化学考点笔记1.1 复习笔记【通关提要】通过本章的学习,了解聚合反应的机理特征,掌握聚合度、数均分子量、重均分子量和分子量分布指数的计算。
【知识框架】【重点难点归纳】一、高分子的基本概念1聚合度(见表1-1-1)表1-1-1 聚合度的基本知识2三大合成材料(1)合成树脂和塑料。
(2)合成纤维。
(3)合成橡胶。
二、聚合物的分类和命名1分类(见表1-1-2)表1-1-2 聚合物的分类2命名(见表1-1-3)表1-1-3 聚合物的命名三、聚合反应1按单体-聚合物结构变化分类分为缩聚反应、加聚反应和开环聚合。
2按聚合机理和动力学分类分为:逐步聚合和连锁聚合。
四、分子量及其分布1平均分子量(见表1-1-4)表1-1-4 平均分子量2分子量分布分子量分布有两种表示方法:(1)分子量分布指数(2)分子量分布曲线如图1-1-1所示,、、依次增大。
数均分子量接近于最可几分子量。
平均分子量相同,其分布可能不同,因为同分子量部分所占百分比不一定相等。
分子量分布也是影响聚合物性能的重要因素。
图1-1-1 分子量分布曲线五、大分子微结构1大分子和结构单元关系大分子具有多层次微结构,由结构单元及其键接方式引起,包括结构单元的本身结构、结构单元相互键接的序列结构、结构单元在空间排布的立体构型等。
结构单元由共价键重复键接成大分子。
2大分子的立体构型(见表1-1-5)表1-1-5大分子的立体构型六、线形、支链形和交联形聚合物(见表1-1-6)表1-1-6 线形、支链形和交联形聚合物七、凝聚态和热转变1凝聚态聚合物凝聚态可以粗分成非晶态(无定形态)和晶态两类。
聚合物的结晶能力与大分子主链、侧基的微结构有关,涉及规整性、链柔性、分子间力等。
结晶程度还受拉力、温度等条件的影响。
2玻璃化温度和熔点非晶态热塑性聚合物低温时呈玻璃态,受热至某一温度范围,则转变成高弹态,这一转变温度特称作玻璃化温度T g,代表链段解冻开始运动的温度。
Thedevelopmentof materialsover time.The materialsof pre-history, onthe left,all occurnaturally;the challengefor theengineers ofthat era wasone ofshaping them.Thedevelopmentofthermochemist 11121314 1516 17在小伸长时,拉伸应变通常以单位长度的伸长来定义。
应变:。
:为材料的起始截面积。
当材料发生较大形变时,上式计算的应力与材料的真实应力会发生较大的偏差,这时正确计算应力应该以真实截面积真应力:相应地可提出真应变的定义,如果材料在某一时刻长度从+dl i,则真应变为:真应变:对于理想的弹性团体,应力与应变关系服从虎克定律,25简单拉伸时的杨氏模量:在简单剪切的情况下,材料受到的力F 是与截面相平行的大小相等、方向相反的两个力。
在这剪切力作用下,材料将发生偏斜,偏斜角的正切定义为切应变。
当切应变足够小时,。
相应地,材料的剪切应力为:剪切模量:θγ≈切应变:剪切位移S ,剪切角θ,剪切面间距d体积模量:必须注意的是,试样宽度和厚度在拉伸过程中是随试样的伸长屈服强度断裂强度Polymers with different properties增强途径增强机理:活性粒子吸附大分子,形成链间物理交联,活性粒子起物理交联点的作用。
惰性填料怎么办?例:PVC+CaCO,PP+滑石粉glassy fiber+polyester增强机理:纤维作为骨架帮助基体承担载荷。
Carbon fiber弯曲模量:增强机理:热致液晶中的液晶棒状分子在共混物中形成微纤结构而到增强作用。
由于微纤结构是加工过程中由液晶棒状分子在共混无物基体中就地形成的,故称做“原位”复合增强。
Charpy试验IZOD试验40补充材料:聚合物的韧性与增韧-----冲击强度Impact strength——是衡量材料韧性的一种指标高速拉伸试验测量材料冲击强度的依据。
高分子物理考研习题整理02高分子的聚集态结构1 高分子结晶的形态①指出聚合物结晶形态的主要类型, 并简要叙述其形成条件有五种典型的结晶形态。
单晶: 只能从极稀的聚合物溶液中缓慢结晶得到。
球晶: 从浓溶液或熔融体冷却时得到。
伸直链晶体: 极高压力(通常需几千大气压以上)下缓慢结晶。
纤维状晶体:受剪切应力(如搅拌), 应力不足以形成伸直链片晶时得到。
串晶: 受剪切应力(如搅拌), 后又停止剪切应力时得到。
②让聚乙烯在下列条件下缓慢结晶, 各生成什么样的晶体?(1)从极稀溶液中缓慢结晶;(2)从熔体中结晶;(3)极高压力下结晶;(4)在溶液中强烈搅拌结晶(1)从极稀溶液中缓慢结晶, 得到的是单晶。
1957年Keller在极稀溶液中, 于Tm附近缓慢地冷却或滴加沉淀剂使聚乙烯结晶, 得到菱形的聚乙烯折叠链的单晶。
(2)从熔体中结晶, 得到的是球晶, 球晶的基本单元仍是折叠链晶片。
(3)极高压力下结晶, 得到的是伸直链晶体。
例如, 聚乙烯在226℃、4800atm下结晶8h, 得到完全伸直链的晶体, 其熔点由原来的137℃提高的140.1℃, 接近平衡熔点144℃。
(4)在溶液中强烈搅拌结晶, 得到的是串晶。
因为搅拌相当于剪切应力的作用, 使结晶与取向同时进行。
串晶由两部分组成, 中间为伸直链的脊纤维i, 周围是折叠链晶片形成的附晶。
由于结晶是在分子链的主链上成核, 在垂直方向上长大, 因此得到的是串晶。
③聚合物因结晶方法、热处理和力学处理不同, 呈现出不同的结晶形态, 简述下列各种形态结构的特征。
(1)单晶(2)球晶(3)拉伸纤维晶(4)非折叠的伸直链晶体(5)串晶(1)单晶: 厚为10-50nm的薄板状晶体(片晶), 有菱形、平行四边形、长方形、六角形等形状, 分子链呈折叠链构象, 分子链垂直于片晶表面;(2)球晶: 球形或截顶的球晶, 由折叠链片晶从中心往外辐射生长组成;(3)拉伸纤维晶: 纤维状晶体中分子链完全伸展, 但参差不齐, 分子链总长度大大超过分子链平均长度;(4)非折叠的伸直链晶体:厚度与分子链长度相当的片状晶体, 分子链呈伸直链构象;(5)串晶:以纤维状晶作为脊纤维, 上面附加生长许多折叠链片晶。
聚合物的结晶形态包括以下几种:
1. 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右。
2. 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状。
3. 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环。
4. 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度。
5. 串晶:在电子显微镜下,串晶形如串珠。
6. 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状。
7. 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。
这些结晶形态在聚合物的结构中起着重要的作用,并影响了聚合物的物理和化学性质。
高分子物理实验讲义材料学院2008.5目录实验一偏光显微镜法观察聚合物的结晶形态 (2)实验二粘度法测定聚合物的分子量 (5)实验三聚合物的热分析—差示扫描量热法 (9)实验四聚合物温度-形变曲线的测定 (13)实验五高聚物表观粘度和粘流活化能的测定 (16)实验六高分子材料应力-应变曲线的测定 (23)实验七高聚物的应力松弛测定 (26)实验八动态粘弹谱法测定聚合物的动态力学性能 (29)实验九高聚物的高频介电损耗测定 (35)参加本实验讲义编写人员如下:实验一偏光显微镜法观察聚合物的结晶形态………………富露祥实验二粘度法测定聚合物的分子量…………………………王娜实验三聚合物的热分析—差示扫描量热法…………………马驰实验四聚合物温度-形变曲线的测定…………………………何秀娟实验五高聚物表观粘度和粘流活化能的测定………………张秀彬实验六高分子材料应力-应变曲线的测定……………………刘大晨实验七高聚物的应力松弛测定………………………………于洋实验八动态粘弹谱法测定聚合物的动态力学性能…………王重实验九高聚物的高频介电损耗测定…………………………王涛实验一偏光显微镜法观察聚合物的结晶形态用偏光显微镜研究聚合物的结晶形态是目前在实验室中较为简便而实用的方法。
结晶条件的不同聚合物的结晶可以具有不同的形态,如单晶、球晶、纤维晶及伸直链晶体等。
在通常条件下,熔体冷却结晶或浓溶液中析出结晶体时,聚合物倾向于生成球晶结构,它是由无数小晶片按结晶生长规律长在一起的多晶聚集体,球晶直径可长到几微米,甚至可达厘米数量级,用偏光显微镜可以进行观察。
结晶聚合物的实际使用性能与材料内部的结晶形态、晶粒大小及完善程度有密切关系,如:光学透明性、冲击强度等。
因此,对于聚合物结晶形态的研究具有重要的理论和实际意义。
一、实验目的:1、了解偏光显微镜的结构、使用方法及目镜分度尺的标定方法。
2、学习用熔融法制备聚合物球晶样品。
3、观察聚丙烯的结晶形态,估算聚丙烯的球晶大小。
高分子材料的结晶和动力学研究一、前言高分子材料广泛应用于现代工业,因其良好的机械性能,化学稳定性和可塑性等特点。
然而,高分子材料内部多数为非晶态,其性质受结晶度影响很大。
因此,研究高分子材料的结晶及动力学行为对于掌握其性质和生产控制具有重要意义。
二、高分子材料的结晶1. 结晶的定义及分类高分子材料结晶是指在一定温度下,高分子链在分子间作用力的作用下,有序排列并逐渐形成规则的结晶区域。
常见的高分子结晶有三种类型:①单向拉伸结晶:高倍定向拉伸过程中,拉伸方向上的分子先形成结晶核心,然后逐渐沿着拉伸方向延伸。
②等温晶化结晶:高分子在等温条件下慢慢形成结晶。
③快速淬火结晶:高分子在快速冷却后形成临时性的结晶。
2. 影响高分子材料结晶的因素高分子材料结晶的过程涉及多种物理和化学变化,主要因素如下:①高分子本身的结晶度:其原子元素的排布方式影响材料的晶体结构。
②温度:高分子材料的结晶度和结晶率与温度有直接关系。
③溶液浓度:过饱和的溶剂中结晶率较高,但过度稀释的组成也会导致结晶度或结晶率不足。
④拉伸速度:一定速度下结晶越完善,另一些材料则相反,这与聚合物分子链结构有关系。
3. 结晶行为的表征高分子材料的结晶行为可以通过多种手段进行表征:①X射线衍射分析:一种直接的方法,可以确定聚合物的结晶结构和结晶度。
②差示扫描量热分析:通过测量反应热,表征聚合物晶化过程,并得到聚合物的结晶能和活化能等动力学参数。
③书面化学分析:通过核磁共振(NMR)技术和X射线光电子俄罗斯(ESCA)技术获得原子结构,研究结晶行为。
三、高分子材料的动力学行为高分子材料的分子链在空间中存在大量的运动,同时结晶与熔融的过程也行使分子链参与行动。
因而,高分子链的动力学行为对于聚合物材料的机械性能和物理性能的改变具有核心性影响。
1. 高分子材料分子链运动高分子链在空间中存在多种运动方式,如扭曲、摆动运动、爬行运动等。
其中,最主要的三种运动形式为:①自由扭曲运动:聚合物链在空间中翻,旋,摆,跳等自由的扭曲形变运动。