大学物理(刚体部分)
- 格式:ppt
- 大小:1.37 MB
- 文档页数:37
课时:2课时教学目标:1. 让学生掌握刚体的基本概念和运动规律;2. 理解转动惯量、角速度、角加速度等物理量的含义和计算方法;3. 能够运用刚体运动定律解决实际问题。
教学重点:1. 刚体的基本概念和运动规律;2. 转动惯量、角速度、角加速度等物理量的计算。
教学难点:1. 刚体运动定律的应用;2. 转动惯量的计算。
教学准备:1. 教师准备多媒体课件、实验器材等;2. 学生准备学习笔记、计算器等。
教学过程:第一课时一、导入1. 复习高中物理中质点和质点组的运动规律;2. 引入刚体的概念,说明刚体运动的特点。
二、新课讲授1. 刚体的基本概念和运动规律:a. 刚体:形状和大小不变,且内部各点相对位置不变的物体;b. 刚体的运动分为平动和转动两种;c. 刚体的运动规律:牛顿第二定律、转动定律。
2. 转动惯量:a. 转动惯量的定义:刚体对某一转轴的转动惯量,等于刚体各质点对该转轴的转动惯量之和;b. 转动惯量的计算:刚体的转动惯量取决于刚体的质量分布和转轴的位置;c. 转动惯量的公式:$I = \sum_{i=1}^{n} m_i r_i^2$。
3. 角速度和角加速度:a. 角速度:刚体转动时,单位时间内转过的角度;b. 角加速度:刚体转动时,单位时间内角速度的变化量;c. 角速度和角加速度的计算:根据转动定律,可以计算出刚体的角速度和角加速度。
三、课堂练习1. 计算刚体的转动惯量;2. 计算刚体的角速度和角加速度。
第二课时一、复习1. 复习第一课时所学内容,重点掌握刚体的基本概念和运动规律;2. 解答学生提出的问题。
二、新课讲授1. 刚体运动定律的应用:a. 牛顿第二定律在刚体运动中的应用;b. 转动定律在刚体运动中的应用;c. 刚体运动问题的解题方法。
2. 实例分析:a. 计算刚体绕定轴转动的角速度和角加速度;b. 计算刚体绕定轴转动的转动动能;c. 分析刚体在复杂受力下的运动情况。
三、课堂练习1. 解答刚体运动问题;2. 分析刚体在复杂受力下的运动情况。
大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。
本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。
一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。
在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。
刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。
2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。
3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。
二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。
2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。
这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。
刚体平衡的条件是力矩的和等于零。
力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。
四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。
2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。
3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。
4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。
五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。
2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。
3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。
一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
• 角速度ω表示刚体转动快慢程度和转向,是代数量,。
角速度也可以用矢量表示,。
• 角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示,。
• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
• 传动比。
二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。
定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。
它与刚体的形状、质量分布以及转轴的位置有关。
计算转动惯量的三个要素:(1)总质量; (2)质量分布; (3)转轴的位置(1) J 与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体转轴位置转动惯量J细棒(质量为m ,长为l )过中心与棒垂直212ml 细棒(质量为m ,长为l )过一点与棒垂直23ml 细环(质量为m ,半径为R )过中心对称轴与环面垂直2mR 细环(质量为m ,半径为R )直径22mR 圆盘(质量为m ,半径为R )过中心与盘面垂直22mR 圆盘(质量为m ,半径为R )直径24mR 球体(质量为m ,半径为R )过球心225mR 薄球壳(质量为m,半径为R )过球心223mR 平行轴定理和转动惯量的可加性1) 平行轴定理设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+2)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。
《大学物理学》刚体部分学习材料一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。