岩石的密度
- 格式:doc
- 大小:4.86 MB
- 文档页数:10
花岗石:2.63~3.3,正长岩:2.5~3.3,闪长岩:2.5~3.3,斑岩:2.8,安山岩:2.5~3.3,辉绿岩:2.7、2.9,流纹岩:2.5~3.3,花岗片麻岩:2.7~2.9,片麻岩:2.5~2.8,石英岩:2.61、2.8~3.0,大理岩:2.5~3.3,千枚岩(板岩):2.5~3.3,凝灰岩:2.5~3.3,火山角砾岩(火山集块岩):2.5~3.3,砾岩:2.2~3.3,石英砂岩:2.6~2.71,砂岩:1.2~3.0岩石密度( t/m 3 )辉石 2.7 ~3.7泥质岩 2.0 ~2.5橄榄石 2.2 ~3.4粉砂岩 2.0 ~2.4花岗岩 2.5 ~2.75砂岩 2.1 ~2.65石英岩 2.5 ~3.6灰岩 2.3 ~2.9片岩和角闪岩 2.5 ~3.7岩盐 1.95 ~ 2.20石膏 2.3 ~ 2.5砂土一般是1.4 g/cm3粉质砂土及粉质粘土1.4 g/cm3粘土为1.4 g/cm3泥炭沼泽土:1.4 g/cm3路面材料计算基础数据1.多种材料混合结构,按压实混合料干密度计算。
单位:t/m3路面名称干密度水泥稳定土基层水泥土1.75水泥砂2.05水泥砂砾2.2水泥碎石2.1水泥石屑2.08水泥石渣2.1水泥碎石土2.15水泥砂砾土2.2石灰稳定土基层石灰土1.68石灰砂砾2.1石灰碎石2.05石灰砂砾土2.15石灰稳定土基层石灰碎石土 2.1石灰土砂砾2.15石灰土碎石2.1石灰、粉煤灰稳定土基层石灰粉煤灰1.17 石灰粉煤灰土1.45石灰粉煤灰砂1.65石灰粉煤灰砂砾1.95石灰粉煤灰碎石1.92石灰粉煤灰矿渣1.65石灰粉煤灰煤矸石1.7石灰煤渣稳定土基层石灰煤渣1.28石灰煤渣土1.48石灰、煤渣稳定土基层石灰煤渣碎石 1.8 石灰煤渣砂砾1.8石灰煤渣矿渣1.6石灰煤渣碎石土1.8水泥石灰稳定砂砾 2.1碎(砾)石2.1土1.7土砂1.94粒料改善砂、粘土 1.9砾石2.1嵌锁级配型基、面层级配碎石2.2级配砾石2.2嵌锁级配型基、面层填隙碎石1.98泥结碎(砾)石2.15磨耗层砂土1.9级配砂砾2.2煤渣1.6沥青碎石粗粒式 2.28中粒式2.27细粒式2.26沥青混凝土粗粒式 2.37中粒式2.36细粒式2.35砂粒式2.35摘自交公路发[1992]65号《公路工程预算定额》附录一。
大多数成岩矿物,例如长石,石英和辉石,具有的离子或共价晶体键密度范围为2.2至3.5 g / cm 3(少数可达4.5 g / cm 3)。
具有离子金属或共价金属键的矿物质,例如亚铬酸盐,黄铁矿和磁铁矿,具有相对较高的密度,范围从3.5到7.5 g / cm3。
在金属矿区,岩石密度随金属矿物质含量的增加而增加。
矿区的花岗岩密度高达2.7g / cm3。
矿物的密度取决于每种元素的原子量和矿物的分子结构。
岩石根据其磁特性可分为三种类型
1.抗磁性矿物,例如石英,磷灰石,闪锌矿,方铅矿等。
磁化率恒定,负且较小。
2.大多数纯顺磁性矿物属于这种类型。
磁化率是恒定的,正的并且相对较小。
3.铁磁矿物,例如磁铁矿和其他含有铁,钴和镍的矿物。
磁化率不是恒定的,正的并且很大。
它也可以被视为一种特殊类型的顺磁性矿物。
岩石的磁性主要取决于构成岩石的矿物的磁性,并受成岩后地质过程的影响。
一般而言,橄榄石,辉石,玄武岩等碱性和超碱性岩浆岩具有最强的磁性,其次是变质岩和沉积岩。
扩展数据:
岩石的放射性:
天然放射性勘探方法是基于岩石和矿石中放射性元素的组成和含量的差异。
铀矿等放射性矿物的放射性元素含量最高,其次是锆石和磁铁矿等稀有辅助矿物,大多数成岩矿物的放射性元素含量相对较低。
岩浆岩和变质岩中岩石中放射性元素的含量最高,其次是沉积岩。
在岩浆岩中,放射性元素的含量以超碱性,碱性,中性和酸性的顺序逐渐增加。
热中子俘获截面是人工放射性勘探中最重要的参数。
氢和锂的热中子俘获截面小于镉和g的截面,其次是th和铀。
密度计测岩石密度公式
岩石密度可以通过密度计进行测量,通常使用的是质量密度计
算公式。
岩石的质量密度(ρ)可以用以下公式表示,ρ = m/V,
其中ρ表示岩石的质量密度,m表示岩石的质量,V表示岩石的体积。
在实际测量中,可以通过测量岩石的质量,然后利用密度计测
量岩石的体积来计算岩石的密度。
测量岩石的体积可以采用水排法、气体排法或者直接测量尺寸计算体积等方法。
另外,对于不规则形状的岩石,可以使用密度计测量其浸水体
积的方法来计算其密度。
浸水体积是指将岩石完全浸入水中所排出
的水的体积,通过这个体积和岩石的质量可以计算出岩石的密度。
需要注意的是,在进行测量时要保证测量的准确性,避免外部
因素对测量结果产生影响。
另外,不同类型的岩石可能具有不同的
密度,因此在进行测量时需要考虑岩石的特性以及测量方法的适用性。
总之,密度计测量岩石密度的公式为ρ = m/V,通过测量岩石
的质量和体积来计算岩石的密度,同时需要注意测量方法的准确性和岩石特性的影响。
花岗石:2.63~3.3,正长岩:2.5~3.3,闪长岩:2.5~3.3,斑岩:2.8,安山岩:2.5~3.3,辉绿岩:2.7、2.9,流纹岩:2.5~3.3,花岗片麻岩:2.7~2.9,片麻岩:2.5~2.8,石英岩:2.61、2.8~3.0,大理岩:2.5~3.3,千枚岩(板岩):2.5~3.3,凝灰岩:2.5~3.3,火山角砾岩(火山集块岩):2.5~3.3,砾岩:2.2~3.3,石英砂岩:2.6~2.71,砂岩:1.2~3.0岩石密度( t/m 3 )辉石 2.7 ~3.7泥质岩 2.0 ~2.5橄榄石 2.2 ~3.4粉砂岩 2.0 ~2.4花岗岩 2.5 ~2.75砂岩 2.1 ~2.65石英岩 2.5 ~3.6灰岩 2.3 ~2.9片岩和角闪岩 2.5 ~3.7岩盐 1.95 ~ 2.20石膏 2.3 ~ 2.5砂土一般是1.4 g/cm3粉质砂土及粉质粘土1.4 g/cm3粘土为1.4 g/cm3泥炭沼泽土:1.4 g/cm3路面材料计算基础数据1.多种材料混合结构,按压实混合料干密度计算。
单位:t/m3路面名称干密度水泥稳定土基层水泥土1.75水泥砂2.05水泥砂砾2.2水泥碎石2.1水泥石屑2.08水泥石渣2.1水泥碎石土2.15水泥砂砾土2.2石灰稳定土基层石灰土1.68石灰砂砾2.1石灰碎石2.05石灰砂砾土2.15石灰稳定土基层石灰碎石土 2.1石灰土砂砾2.15石灰土碎石2.1石灰、粉煤灰稳定土基层石灰粉煤灰1.17 石灰粉煤灰土1.45石灰粉煤灰砂1.65石灰粉煤灰砂砾1.95石灰粉煤灰碎石1.92石灰粉煤灰矿渣1.65石灰粉煤灰煤矸石1.7石灰煤渣稳定土基层石灰煤渣1.28石灰煤渣土1.48石灰、煤渣稳定土基层石灰煤渣碎石 1.8 石灰煤渣砂砾1.8石灰煤渣矿渣1.6石灰煤渣碎石土1.8水泥石灰稳定砂砾 2.1碎(砾)石2.1土1.7土砂1.94粒料改善砂、粘土 1.9砾石2.1嵌锁级配型基、面层级配碎石2.2级配砾石2.2嵌锁级配型基、面层填隙碎石1.98泥结碎(砾)石2.15磨耗层砂土1.9级配砂砾2.2煤渣1.6沥青碎石粗粒式 2.28中粒式2.27细粒式2.26沥青混凝土粗粒式 2.37中粒式2.36细粒式2.35砂粒式2.35摘自交公路发[1992]65号《公路工程预算定额》附录一。
各种岩石的密度各种石头的密度都不一样的,部分石头密度如下:花岗内石:2.63~3.3,正长岩:容2.5~3.3,闪长岩:2.5~3.3,斑岩:2.8,安山岩:2.5~3.3,辉绿岩:2.7、2.9,流纹岩:2.5~3.3,花岗片麻岩:2.7~2.9,片麻岩:2.5~2.8,石英岩:2.61、2.8~3.0,大理岩:2.5~3.3,千枚岩(板岩):2.5~3.3,凝灰岩:2.5~3.3,火山角砾岩(火山集块岩):2.5~3.3,砾岩:2.2~3.3,石英砂岩:2.6~2.71,砂岩:1.2~3.0。
可根据地质情况查一下《水利水电工程施工手册》第1卷附录部分表I-19,很详细的。
如果是考试的话题目会告诉你的,或者你要知道石头密度比水大。
大多数造岩矿物如长石、石英、辉石等具有离子型或共价型结晶键密度为2.2~3.5克/厘米bai3(极少数达4.5克/厘米3)。
结晶键为离子-金属型或共价-金属型的矿物,如铬铁矿、黄铁矿、磁铁矿等密度较大,为3.5~7.5克/厘米3。
在金属矿区,岩石中金属矿物的含量增高,岩石的密度就增大。
矿区花岗岩的密度有的就高达2.7克/厘米3以上。
矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。
岩石按其磁性的不同可分为3类:1、反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。
磁化率为恒量,负值,且较小。
2、顺磁性矿物大多数纯净矿物都属于此类。
磁化率为恒量,正值,也比较小。
3、铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。
磁化率不是恒量,为正值,且相当大。
也可认为这是顺磁性矿物中的一种特殊类型。
岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。
一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强而变质岩次之,沉积岩最弱。
扩展资料:岩石具有的放射性:天然放射性勘探方法所依据的是岩石和矿石中放射性元素成分和含量的差别。
放射性矿物如铀矿等的放射性元素含量最高,锆石等稀有副矿物和磁铁矿等金属矿物次之,绝大多数造岩矿物的放射性元素含量都比较低。
岩石强度和密度的关系
岩石的强度和密度之间存在着密切的关系,这种关系可以从多个角度来解释。
首先,让我们从物理学的角度来看。
岩石的密度是指单位体积内的质量,通常以克/立方厘米或千克/立方米来表示。
而岩石的强度则是指岩石抵抗外部力量破坏的能力。
一般来说,岩石的密度越大,其中所含的矿物颗粒越紧密,结合作用越强,因此岩石的整体强度也会相对较高。
这是因为密度大意味着岩石内部的颗粒之间的空隙较小,颗粒之间的结合面积相对较大,从而增加了岩石的内聚力和抗压能力。
其次,从地质学的角度来看,岩石的形成过程中密度和强度也有着紧密的联系。
例如,由于在地壳深部形成的岩石经历了高温高压的作用,其密度和强度往往会比表层岩石要大。
这是因为高温高压会促使岩石中的矿物重新结晶并形成新的结合方式,从而增加岩石的强度。
同时,由于深部岩石的密度较大,所以整体上来看,岩石的密度和强度之间存在着正相关的关系。
此外,岩石的强度和密度还受到岩石类型、成分、结构等因素
的影响。
例如,花岗岩通常具有高密度和强度,而页岩则密度较小,强度也相对较低。
因此,不同类型的岩石其密度和强度之间的关系
也会有所不同。
总的来说,岩石的强度和密度之间存在着密切的关系,密度的
增加通常会伴随着强度的增加,但具体的关系还需要根据岩石的具
体类型和成因来进行具体分析。
名词解释岩石的密度岩石的密度是指岩石的质量与其体积的比值,通常用克/立方厘米或千克/立方米表示。
它是描述岩石物理性质之一,具有重要的地质学意义。
岩石的密度受到岩石成分、结构、孔隙度以及压力等因素的影响。
1. 岩石密度的意义岩石密度是研究岩石形成、演化和构造背景的重要参数。
它可以帮助我们了解岩石的成因、岩石圈的物质组成、地壳的构造和地质过程等。
岩石密度还可以用于探测矿床、油气资源和地震研究等领域。
2. 影响岩石密度的因素(1)岩石成分:不同的岩石成分具有不同的密度。
比如,铁质岩石的密度通常较高,而含水岩石的密度则较低。
(2)岩石结构:岩石的结构也会对密度产生影响。
例如,具有大量裂隙或孔隙的岩石密度较低,而结晶度较高的岩石密度较高。
(3)岩石中的孔隙度:岩石中的孔隙度是由岩石颗粒之间的间隙空间决定的。
孔隙度越高,岩石密度越低。
如泥岩由于其较高的孔隙度而密度较低。
(4)岩石的压力:随着压力的增大,岩石的密度也会增加。
因此,同一种岩石在地壳深处的密度通常会高于浅部。
3. 测定岩石密度的方法(1)实验室方法:实验室中常用的测定岩石密度的方法有容器法、天平法和氦气置换法等。
容器法是将岩石样品放入一个标准容器中,先测量容器的质量,然后将样品放入容器中再次测量质量,从而计算出样品的密度。
天平法则是先测量样品与水的质量变化,然后通过质量的差异计算样品的密度。
(2)地球物理方法:地球物理方法常用于实地勘探以及地球物理勘探中。
通过地震波速度测量和重力测量等手段,可以间接获得岩石密度的信息。
4. 岩石密度的应用(1)地质勘探:通过测定不同地层岩石的密度变化,可以推断出地下构造和沉积变化的情况,进而预测矿床的分布和储量。
(2)油气勘探:岩石密度对于油气的分布和储量有着重要的影响。
通过测定不同岩石层的密度,可以判断是否存在油气聚集的条件。
(3)地震勘探:岩石密度是地震波传播的重要参数。
地震勘探中通过记录、分析地震波传播的速度和振幅变化,可以推断出不同岩石层的厚度、密度差异等信息。
第五章岩(矿)石的密度岩石、矿物的密度,是指单位体积物质的质量,其单位为g/Cm 3或kg/m 3。
地壳内不同地质体之间存在的密度差异,是开展重力勘探工作的地球物理前提条件,也是对重力测量结果进行地形校正和中间层 校正不可缺少的参数。
而且,密度资料对于重力异常的解释也有着重要的作用。
因此,对岩石密度的测 定以及对测定结果的分析研究是重力勘探工作的一个重要内容。
§决定岩(矿)石密度的主要因素根据大量测定和长期研究结果认为,决定岩石密度大小的主要因素是:1 •岩石中各种矿物成分及其含量的多少;-1不同岩相带曙厦廿和曲縄二、沉积岩的密度组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的 孔隙度,因而它们的密度往往有较大的变化范围。
我们从图 1.5 — 3可以看出这一点。
一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层 负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。
图 1.5 一 4表明,沉积岩的密度随孔隙度的JOU2•岩石中的孔隙度大小及孔隙中的充填物多少; 3 •岩石所受压力的大小。
下面分别对火成岩,沉积岩和变质岩的密度特点作一介绍。
一、火成岩的密度火成岩的密度主要由矿物成分及含量多少来决定。
从图1.5 —1中可以看出,火成岩的矿物成分与其密度有一定关系。
从酸性岩 向基性岩过渡时,其密度值是随岩石中铁镁暗色矿物的百分含量 的逐渐增加而变大。
对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中, 结晶分异作用使得在岩体边部和顶部与其内部矿物结晶先后的不 同,导致形成不同的岩相带。
一般而言,在周围偏基性,向中心 逐渐发育为偏酸性。
图1.5 — 2为江西蒙山花岗间长岩和九岭花岗 岩侵入体的不同岩相带的密度分布曲线。
由图所示,边缘相的密 度要比过渡相和内相的密度大些。
对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同, 但因含量有所变化时,则其密度也会有所不同。
岩(矿)石物性资料密度:一. 表1-1 常见矿物的密度名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94硬石膏 2.7-3.0 白云石 2.86-2.93石膏 2.2-2.4 白云母 2.77-2.88霞石 2.55-2.65 黑云母 2.7-3.3绿高岭石 1.72-2.5 角闪石 3.62-3.65白榴石 2.45-2.5 透闪石 2.99-3.00硅灰石 2.79-2.91 阳起石 3.1-3.2蛇纹石 2.5-2.6 星叶石 3.0-3.15赤铁矿 4.5-5.2 钠闪石 3.3-3.46磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46黄铁矿 4.9-5.2 钛铁矿 4.5-5.0磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4黄铜矿 4.1-4.3 辉铜矿 5.5-5.8斑铜矿 4.9-5.2 海绿石 2.2-2.9石墨 2.09-2.25 多水高岭土1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6金红石 4.18-4.23 锰矿 3.4-6.0钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5煤 1.2-1.7 褐煤 1.1-1.3表1-2 常见岩石密度 名称密度/g.3cm - 名称 密度/g.3cm -纯橄榄岩 2.5-3.3橄榄岩 2.5-3.6 玄武岩 2.6-3.3辉长岩 2.7-3.4 安山岩 2.5-2.8辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9花岗岩 2.4-3.1 石英岩 2.6-2.9流纹岩 2.3-2.7 片麻岩 2.4-2.9云母片岩 2.5-3.0 千枚岩 2.7-2.8蛇纹岩 2.6-3.2 大理岩 2.6-2.9白云岩 2.4-2.9 石灰岩 2.3-3.0页岩 2.1-2.8 砂岩 1.8-2.8白垩岩 1.8-2.6 干砂岩 1.4-1.7粘土 1.5-2.2 表土 1.1-2.0 花岗闪长岩 2.69闪长岩 2.81 辉长岩 2.85-3.05 霞石正长岩 2.66 正长岩 2.62 石英闪长岩 2.75 安山玢岩 2.73 石英斑岩 2.60 粒玄岩 2.85 泥岩 1.2-2.4 粉砂岩 1.8-2.8 砂质页岩 2.3-3.0 泥板岩 1.7-2.9 角砾岩 1.6-3.0 泥灰岩 1.5-2.8 钾盐 1.9-2.0 砾岩 2.1-3.0 玄武岩 2.7-3.3 角岩 2.74 玢岩 2.6-2.9二.磁性表2-1 铁磁性矿物和金属的饱和磁化强度和居里温度 矿物化学式 饱和磁化强度(A/m ) 居里温度/K 磁铁矿24ZnFe O 92000 853 磁黄铁矿21x Fe S - 20000 593 赤铁矿23Fe O 85000 853 镍磁铁矿24NiFe O 47000 873 钴 Co 161800 1404 铁 Fe 218000 1053 镍 Ni 54400 631铁镍矿3Ni Fe 110000 620 铁钴矿 CoFe 232000 986表2-2 一些反磁性矿物和顺磁性矿物的磁化率 矿物化学式 抗磁化率(4π×610-SI ) 方解石3CaCO -0.5 方铅矿 PbS -0.34石英2SiO -0.5 赤铜矿2Cu O -0.14 自然金 Au -0.14矿物 化学式 顺磁化率(4π×610-SI )角闪石 2353222223(,)():,,,,,,A B Si Al O OH A Mg Fe Ca NaB Mg Fe Fe Al -+++== 13-75黑云母 33102(,)(,)()K Mg Fe Al Fe Si O OH 53-78氧化铜 CuO 3.25石榴子石2222433():,,,;,,A B SiO A Ca Mg Fe Mn B Al Fe Cr +++== 31-159 辉石3FeSiO 73表2-3 火成岩的磁化率 岩石磁化率变化范围(4π×610-SI ) 常见值(4π×610-SI ) 花岗岩 0-4000 200流纹岩 20-300辉绿岩 8-13000 4500斑岩 20-16700 5000玄武岩 20-14500 6000闪长岩 50-10000 13000橄榄岩 7600-15600 13000安山岩 13500表2-4 变质岩的磁化率 岩石磁化率变化范围(4π×610-SI ) 常见值(4π×610-SI ) 片岩 25-240 120千枚岩 130片麻岩 10-2000石英岩 350蛇纹岩 250-1400板岩 0-3000 500表2-5 沉积岩变化率 岩石磁化率变化范围(4π×610-SI ) 常见值(4π×610-SI )白云岩 0-75 10辉岩 0-280 25砂岩 0-1560 30页岩 5-1480 50表2-6 矿物磁化率抗磁性物质顺磁性物质名称κ平均×10-5(SI)名称κ平均×10-5(SI)(κ)(κ)石英 -1.3 橄榄石 2正长石 -0.5 角闪石 10-80锆石 -0.8 黑云母 15-65方解石 -1.0 辉石 40-90盐岩 -1.0 铁黑云母 750方铅矿 -2.6 绿泥石 20-90闪锌矿 -4.8 金云母 50石墨 -0.4 斜长石 1磷辉石 -8.1 尖晶石 3重晶石 -1.4 白云母 4-20表2-7 铁磁性矿物磁化率矿物分子式κ×1/(4π)CGSM(κ)磁铁矿 Fe3O40.07-0.2钛磁铁矿 xFe3O4.(1-x)TiFe2O410-7-10-2磁赤铁矿γFe2O30.03-0.2赤铁矿αFe2O310-6-10-5磁黄铁矿 FeS1+x10-3-10-4铁镍矿 NiFe2O40.05锰尖晶石 MnFe2O32.0镁铁矿 MgFe2O40.8针铁矿αFeOOH (0.02-80)×10-4纤铁矿γFeOOH (0.9-2.5)×10-4菱铁矿 FeCO3(20-60)×10-4 表2-8 地壳岩石的磁化率和天然剩余磁化强度岩石类型κ【10-6SI(κ)】 Mr(A/m)超基性岩 101-103 10-1-101基性岩 100-103 10-3-101酸性岩 100-102 10-3-101变质岩 10-1-102 10-3-10-1沉积岩 10-1-101 10-3-10-1表2-9 几种岩石的Q值岩石平均值最大值Qmax花岗岩 0.1-0.3 3橄榄岩 0-5 5辉长岩 0-0.5 3流纹岩 1-10安山岩 1-15玄武岩 1-20 160云母片岩 0-0.5 2片麻岩 0-1.5 2云英岩 0-0.3 3三.电性表3-1 一些矿物的电阻率矿物电阻率/(Ω.m)矿物电阻率/(Ω.m)斑铜矿 10-6-10-3赤铜矿 10-3-10-6磁铁矿 10-6-10-3锡石 10-3-100磁黄铁矿 10-6-10-3辉锑矿 100-103黄铜矿 10-3-100软锰矿 100-103黄铁矿 10-3-100菱铁矿 100-103方铅矿 10-3-100铬铁矿 100-106辉铜矿 10-3-100闪锌矿 103-106辉钼矿 10-3-100 黑铁矿 100-103钛铁矿 103-106表3-2 几种常见岩石的各向异性岩石名称λρn /ρt层状粘土 1.02-1.05 1.04-1.00层状砂岩 1.1-1.6 1.20-2.56泥质板岩 1.1-1.59 1.20-2.5泥质页岩 1.41-2.25 2.2-5.0无烟煤 2.0-2.55 4.0-6.5石墨化碳质页岩 2.0-2.8 4.0-7.84表3-3 几种常见天然水的电阻率名称电阻率(Ω.m)名称电阻率(Ω.m)雨水 >1000 地下水 <100河水 0.1-100 矿井水 1-10海水 1.0-10 深成盐渍水 0.1-1表3-4 不同地质年代各种岩石电阻率的变化范围岩石类型海相碎屑陆相碎屑喷出岩侵入岩化学沉积岩地质年代沉积岩沉积岩(玄武岩(花岗岩(灰岩,盐岩)流纹岩)辉长岩)第四纪和第三纪1-10 15-50 10-200 500-2000 50-5000中生代 5-20 25-100 20-500 500-2000 100-10000晚古生代 10-40 50-300 50-1000 1000-5000 200-100000 早古生代 40-200 100-500 100-2000 1000-5000 10000-100000 前寒武纪 100-2000 300-5000 200-5000 5000-20000 10000-100000表3-5 一些矿物的介电常数矿物相对介电常数矿物相对介电常数金刚石 5.7 赤铁矿 25.0-170石墨 <81.0 萤石 6.26-6.79方铅矿 17.0-81.0 橄榄石 6.8黄铁矿 33.7-81.0 云母 5.4磁黄铁矿 <81.0 正长石 4石英 3.8 透辉石 2.9石膏 6.16 普通角闪石 4.9-5.8表3-6 一些岩石的相对介电常数岩石相对介电常数岩石相对介电常数干燥砂岩 4.6-5.9 花岗闪长岩 6天然气 1 砂岩 5石油 2-2.4 白云岩 6.9灰岩 7.5-9.2 火山凝灰岩 3.8-4.5泥岩 5-25 黑云母花岗岩 6-8砂质泥岩 5.53 辉绿岩 11.6干燥白云岩 7-11 盐岩 5.6-6.25表3-7 几种矿物的面极化系数矿物石墨黄铜矿磁铁矿黄铁矿方铅矿磁黄铁矿系数k 14.1 10.0 9.9 7.5 2.5 0.4(Ω.m2)表3-8 几种岩矿石的频率相关系数岩矿石名称风化闪长岩大理岩闪长斑岩铁帽矿化闪长岩C值范围 0.44-0.72 0.35-0.69 0.29-0.41 0.14-0.48 0.20-0.22 C值平均值 0.58 0.52 0.38 0.31 0.21表3-9 20摄氏度条件下岩,矿石的相对介电常数及损耗角正切矿物εr tgδ岩石εrtgδ石英 4.2-5.5 0.0006-0.002火成岩 7-15 0.03-0.1长石 4-10 0.03-0.15 变质岩 5-12 0.05-0.2云母 5-8 0.0003-0.002 沉积岩氯化物 5-6 石灰岩 8-12硫化物 8-17 砂岩 5-11石油 10-30 砂 3-25 可达1水 80 泥岩 4-30 可达1表3-10 岩矿石的电导率和介电常数Material Conductivity(S/m) Dielectric const.(F/m) Air 0 1 Asphalt:dry 3210~10--2~4Asphalt:wet 21--6~1210~10Clay:dry 31--2-610~10Clay:saturated 1-15-4010~1Concrete:dry32--4-1010~10Concrete:wet 21--10~2010~10Freshwater 10-4-10-281 Freshwater ice 10-3 4 Granite:dry 10-8-10-6 5 Granite:wet 32--710~10Limestone:dry 10-9-10-67 Limestone:wet 21--810~10Sand:dry 10-7-10-34~6Sand:saturated 10-4-10-210~30 Seawater 3-4 81Rock salt:dry 10-44~7四.波速表4-1几种造岩矿物的弹性模量矿物杨氏模量(E/GPa)体积模量K/Gpa)泊松比方解石68.8 74.4 0.31 黑云母33.8 50.5 0.27 白云母56.8 42.9 0.25 钠长石69.0 57.0 0.28 黄铁矿286.8 143.9 0.16 磁铁矿230.3 161.7 0.26表4-2几种常见岩石弹性模量的平均值矿物杨氏模量(E/GPa)体积模量K/Gpa)泊松比辉绿岩84.42 57.85 0.26 花岗岩62.44 45.43 0.25 砂岩65.27 40.08 0.16 粉砂岩61.64 40.00 0.23 灰岩68.59 48.41 0.25 白云岩80.64 65.57 0.27表4-3若干常见矿物的声波(地震波)速度矿物V p/(m.s-1)V s/(m.s-1)矿物V p/(m.s-1)V s/(m.s-1)正长石5900 3070 黄铁矿7900 5050钠长石6060 3350 铬铁矿7700奥长石6240 3390 磁铁矿7400 4200拉长石6550 3540 赤铁矿6700 4300石英6000 闪锌矿5310 2560方解石6660 3390 方铅矿3770 2080白云母5810 3360 斑铜矿3800 1700角闪石7210 3990 辉钼矿3900 1850辉石7200 4170 黑钨矿4200 1800橄榄石8400 5160 锡石6950 3400表4-4常见火成岩的声波(地震波)速度岩石V p/(m.s-1)V s/(m.s-1)岩石V p/(m.s-1)V s/(m.s-1)花岗岩5470 3090 流纹岩4620 2630闪长岩5850 3180 安山岩5840 3160辉长岩6460 3520 橄榄岩8200 4700辉绿岩6000 3400 英安岩5840 2960花岗闪长岩5950 花岗伟晶岩4270 2860正长岩6150 2850 黑云母花岗岩5600 2750表4-5 常见变质岩的声波(地震波)速度岩石V p/(m.s-1)V s/(m.s-1)岩石V p/(m.s-1)V s/(m.s-1)板岩5770 3370 大理岩5870 3210片岩4030 2880 矽卡岩5490 2960片麻岩4760 2880 混合岩4970 3040变粒岩6010 3380 角闪岩6800 2850角闪岩5920 3480 花岗片麻岩5650 2800榴辉岩5460 3540 角闪石片麻岩5900 2850石英岩5400 3260 斜长麻粒岩5750 2750磁铁石英岩5470 3330 角岩6220 3490石英脉6050 3760 闪长片麻岩6200 2950表4-6常见沉积岩的声波(地震波)速度岩石V p/(m.s-1)V s/(m.s-1)矿物V p/(m.s-1)V s/(m.s-1)砾岩5070 3000 硬石膏6000 3000砂岩5290 3200 角砾岩5600 2800粉砂岩5440 3030 粘土3000 1800凝灰岩5700 3170 细粒岩5400 3240灰岩5520 3110 石膏4600 2380白云岩6240 3400 泥灰岩4500 2250表4-7各种沉积岩的波速岩石成分地震波速度V p/(m.s-1)砾岩碎石干砂200-800砂质粘土300-900湿砂600-800粘土1200-2500疏松岩石1500-2500致密岩石1800-4000白垩1800-3500泥质页岩2700-4100石灰岩,致密白云岩2500-6100石膏,无水石膏3500-4500泥灰岩2000-3500冰3100-3600岩盐4200-5500五.温度表5-1几种常见造岩矿物的热导率和比热容矿物热导率W/(m.K)比热容J/(kg.K)α-石英 6.5-7.2 750长石 2.31 711云母 2.32 760橄榄石 5.15 980白云石 5.51 870方解石 2.9 820硬石膏 5.0 560表5-2由热导率,密度与比热计算所得热扩散率岩石 k ρ c α名称(0.418W/(m.K)(g/cm3)(4.186J/(g.K))(cm2/s)角闪斜长岩 5.16 2.78 0.18 0.01片麻岩 6.5 2.57 0.153 0.017片麻岩 6.8 2.615 0.173 0.015片麻岩 6.38 2.625 0.179 0.014片麻岩 5.81 2.76 0.176 0.012混合花岗岩 4.91 2.68 0.19 0.0096表5-3中国科学院实测岩石标本热扩散率地区岩性标本比热C 密度ρ热容Cρ热导率k 热扩散率α块数(4.186J/(g.K))(g/cm3)(4.186J/(cm.K)(0.418W/(m.K)(cm2/s) 河砂质泥岩 7 0.223 2.655 0.592 4.78 0.0081南粉砂岩 1 0.235 2.575 0.584 5.02 0.0083平细砂岩 2 0.227 2.649 0.601 5.02 0.0084顶中砂岩 6 0.212 2.642 0.560 6.37 0.0113山石灰 1 0.217 2.679 0.581 5.44 0.0094 岩 3 0.214 2.645 0.566 4.40 0.0077安正长斑岩 2 0.203 2.580 0.523 5.12 0.0098徽凝灰角砾岩1 0.214 2.577 0.589 4.33 0.0079罗次生石英岩1 0.220 2.691 0.592 8.79 0.0148河硬石膏石英岩2 0.190 3.97 0.754 9.52 0.0126 六.放射性表6-1 岩浆岩的放射性岩石类型SiO2Ra×10-12 U×10-6 Th×10-6 Th/U K(%)(g/g)(g/g)(g/g)(g/g)酸性75-65 1.34 4.0 13.0 3.3 0.026中性65-52 0.51 1.4 4.4 3.2 0.020基性52-40 0.38 1.1 4.0 3.6 0.014超碱性少于40 0.20 0.6 2.0 3.3 0.004表6-2各种水中氡,镭,铀的含量水Rn(氡)(3.7Bq/m3)Ra(镭)(g/L) U(铀)(g/L) 地海洋,河0 (1-2)×10-13(6-20)×10-7表湖0 10-128×10-6水地沉积岩6-15 (2-300)×10-12(2-50)×10-7下酸性岩浆岩100 (2-4)×10-12 (4-7)×10-6水铀矿床500-1000 (6-8)×10-12(8-600)×10-6。
第五章岩(矿)石的密度岩石、矿物的密度,是指单位体积物质的质量,其单位为g/Cm3或 kg/m3。
地壳内不同地质体之间存在的密度差异,是开展重力勘探工作的地球物理前提条件,也是对重力测量结果进行地形校正和中间层校正不可缺少的参数。
而且,密度资料对于重力异常的解释也有着重要的作用。
因此,对岩石密度的测定以及对测定结果的分析研究是重力勘探工作的一个重要内容。
§1 决定岩(矿)石密度的主要因素根据大量测定和长期研究结果认为,决定岩石密度大小的主要因素是:1.岩石中各种矿物成分及其含量的多少;2.岩石中的孔隙度大小及孔隙中的充填物多少;3.岩石所受压力的大小。
下面分别对火成岩,沉积岩和变质岩的密度特点作一介绍。
一、火成岩的密度火成岩的密度主要由矿物成分及含量多少来决定。
从图—1中可以看出,火成岩的矿物成分与其密度有一定关系。
从酸性岩向基性岩过渡时,其密度值是随岩石中铁镁暗色矿物的百分含量的逐渐增加而变大。
对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中,结晶分异作用使得在岩体边部和顶部与其内部矿物结晶先后的不同,导致形成不同的岩相带。
一般而言,在周围偏基性,向中心逐渐发育为偏酸性。
图—2为江西蒙山花岗间长岩和九岭花岗岩侵入体的不同岩相带的密度分布曲线。
由图所示,边缘相的密度要比过渡相和内相的密度大些。
对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同,但因含量有所变化时,则其密度也会有所不同。
对于同源岩浆,尽管其化学成分可能一样,但由于成岩环境不同时,也可能形成不同的矿物和岩石,当然其密度亦不同。
由此可知,侵人岩与喷出岩之间密度有较大差异。
二、沉积岩的密度组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的孔隙度,因而它们的密度往往有较大的变化范围。
我们从图—3可以看出这一点。
一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。
图一4表明,沉积岩的密度随孔隙度的减小而呈线性增大。
此外,同一成分的沉积岩,由于成岩时代早晚的不同,经历的地质作用的不同造成岩石的孔隙度也不尽相同,则其密度也会有所差异。
总之,时代较老的沉积岩要比时代新的同类岩石的密度要大些。
当然,对于同一时代同类岩性的沉积岩来说,由于所受地质作用条件的不同,在不同部位,其密度也会有所不同。
图一5为鄂尔多斯盆地奥陶系的密度分布情况。
它表明在盆地边缘的密度增大,而向盆地中心密度逐渐减小。
三、变质岩的密度对变质岩来说,其密度与矿物的成分、含量和孔隙度均有密切关系,这主要由变质的性质和变质的程度大小来决定。
一般讲区域变质作用的结果、将使变质岩的密度比原岩的要增大。
例如,变质程度较深的片麻岩,麻粒岩等要比变质程度浅的千枚岩,石英片岩等岩石密度大些。
动力变质作用由于使原岩结构遭破坏,矿物被压碎,因而其密度自然要比原岩密度低。
但有时动力变质作用若使原岩发生了硅化、碳酸盐化以及重结晶时,则它的密度会比原岩要大些。
例如热液变质作用使灰岩(~cm3)发生矽卡岩化后,则密度可达cm3,但橄榄岩(~ g/cm3)发生蛇纹石化后则密度小到~cm3总之,对变质岩密度的研究要具体问题具体分析。
从统计的密度资料来看,在不同构造单元中,同一时代的变质岩密度相差不大,但时代越老则密度往往越大。
上面我们简单介绍了有关各类岩石密度的主要特征,这主要是针对各类岩石的成分、含量、孔隙度、成岩条件、成岩环境以及构造条件等诸多因素来进行分析的。
对于各类矿体而言,其密度主要决定于成分和含量。
一般讲,金属矿的密度要比非金属矿的密度大。
实际工作中可参考常见岩(矿)石密度表,见表—1。
表—1 岩(矿)石密度值表§2 岩(矿)石标本密度的测定在实际工作中,通过直接测定岩(矿)石标本的密度大小来确定它们所代表的岩性的密度或确定它们之间的密度差。
一、对岩、矿石标本采集的要求1.应系统地采集测区内不同构造单元及不同岩性的标本,同时要注意它们的代表性。
对于分布范围较广的较厚岩层以及测区内的勘探对象及围岩要适当采集较多的标本;而对于薄层或与勘探目的关系不大的岩石可以少采。
在异常区内及岩性变化较大的地段应多采集;对于正常区及岩性变化不大的地段可以少采集;2.采集标本时,既要采集浅部的,又要尽量采集深部的。
因为浅部密度资料可以用于中间层和地形校正时使用;而深部密度资料要用于对重力异常的地质解释;3.每类标本的数量一般为30~50块,每块标本重量一般在300 g 左右为宜; 4.对所采集的标本应及时登记,编号,并注明地点、名称、地质年代及深度等;5.有时应考虑其它物性参数测定的要求,如形状、规格和大小,尽量发挥所采集的标本的综合利用价值。
二、标本密度测定方法 (一)天平测定法若标本质量用m 表示,它的体积为V 时,其密度σ可用下式表示Vm=σ (-1) 标本的体积可根据阿基米德原理来确定。
即物体在水中减轻的重量,等于它排开同体积水的重量,于是可以间接求出标本体积V 。
设标本在空气中的重量为P 1,在水中重量为P 2,V 为标本排开水的体积,σ0为水的密度时,得P 1-P 2=V •σ0•g即 g P P V .021σ-=当4℃时,净水的密度σ0=1g/cm 3,上式便为gP P V 21-= ()把式()代入式(),并已知P 1=mg ,可得3)-(1.5 .2112121P P P P P g m gP P m -=-=-=σ 只要先求出标本P 1,P 2的重量,然后可由式()计算出密度σ0天平法测定σ的精度取决于P 1、P 2的测定精度。
由误差传递理论可知,式()计算σ的最大绝对误差εσ的表达式为221121)()()(211P P P P P P P P -++-=εεεεσ该式中εσ为密度的误差εP1、εP2分别为P 1、P 2的测定误差,对于同一天平称量的结果可以认为εP1=εP2。
设εP1=εP2=εP 时,利用式(-3)除以式(-4)可得2112P P P PP -+=εεσεσ 由于P 1-P 2= P 1/σ,所以式()变为111)12(2P P P P P P εσσεεσεσ+=+= 即1)12(P P εσσεσ+= ()从式(-6)可见,天平法测定密度的误差εσ不仅决定于标本称重误差εP ,同时还与标本自重P 1和其实际密度σ大小有关。
在各标本的重量相同、称重的精度也相同的情况下,对于密度愈大的标本,则测定的误差愈大。
若想减小误差,虽然可选重量较大的标本来测定,但实际工作中称重量大的天平精度又不高。
因此,标本重量既不能太小(轻),也不能太大(重),故一般取300 g 左右为宜。
对于较高密度的标本可适当大些。
对于多孔的标本,为了防止水分浸入孔隙中而影响测定结果,可涂一层石蜡。
这时标本涂蜡后的重量用P 2表示,它浸入水后的重量用P 3表示。
则由式(),得7)-(1.5 )(1)(1123201P P P P P K ---=σσσ式中σ0为水的密度,σK 为石蜡密度;一般石蜡密度σK =cm 3。
(二)密度仪测定法天平虽然能测定出标本密度,但操作费时,又不是直接显示密度值,还需要计算,所以效率很低。
现在介绍可直接测定密度的一种仪器,称为密度仪。
密度议是在天平原理上发展起来的仪器,它的构造如图所示。
仪器主要由一个折式秤臂AOB 构成,AO 和BO 分别为两个长度均为r 的左右臂,其折角为(180°-)。
秤臂中间装有一个指针ρ,秤臂的重心可集中在转轴O 点上,工作时需事先调节装置使它处干随遇平衡状态。
密度仪还配有一个度盘,在度盘上标有密度刻度;度盘右边标有固定标志线并用n 表示,它是指标本在空气中平衡时应在的位置。
下面简介密度仪工作原理。
测定密度时,先将标本用可以忽略其重量的细线悬挂在秤臂B 端,调节A 端悬挂的砝码的重量,使指针与刻度n 重合,见图 (a )。
这时 AO 与水平面夹角为α1;A 端法码重量为P 而B 端标本重量用又P 1表示,其平衡关系式为)cos(cos 111αϕα-⋅=⋅r P r P () 当标本浸没在水中时(见图 (b )),由于标本受到水的浮力使B 端要升高并达到新的平衡位置。
这时AO 与水平面夹角用α2表示,则平衡关系式为)cos(cos 222αϕα-⋅=⋅r P r P ()式中P 2为标本在水中的重量。
由式()、()可求出P 1、P 2的表达式,并将它们代人式(),简化后得密度的表达式为122αααϕσtg tg tg ctg -+=从式()可得出α2与σ的相对应关系式为1112-+=-σασϕαtg ctg tg由式()可见α2与标本重量无关,当为仪器构造常数,并调节法码重量使指针与固定标志n 重合时,即保持α1为常数,这时密度σ只与α2有单一对应关系了。
将这些不同的α2角度在度盘上只标上所对应的密度σ值即可。
所以当标本浸在水中,待平衡后,指针所停留的刻度就直接指示出标本的密度了。
密度仪的使用方法简述如下: ①安装仪器,调平后刻度盘应垂直;②秤臂B 端挂上挂钩,同时调节A 端秤臂上左端配重螺丝,使转动系统处于随遇平衡状态,③B 端挂上标本,A 端放置法码,调节砝码的重量,使指针指到刻度n④将标本浸在水中,待平衡稳定后,指针所示的刻度值就是该标本密度σ值。
见图。
利用密度仪测定的精度可达±~ g/cm 3,其效率比天平高3~4倍。
三、密度测定结果的整理由于同类均质岩(矿)石标本密度的测定值通常服从算术正态分布规律。
因此对于同一类标本测定结果需进行整理,以得出其平均值和常见值。
(一)当同一类标本数目少于30块时,可按下式计算其密度的算术平均值为NNi i∑==1σσ式中的σi 为第i 块标本的密度值;N 为块数。
上述密度值的离散程度,可用标准离差D 表示为∑=--±=Ni iN D 12)1/()(σσ当同类标本块数过少时,计算标准离差没有意义,这时可用表格列出密度的平均值、最大、最小值亦可。
(二)当同一类标本数目在30块以上时,还可绘制频率分布曲线来统计平均密度值。
首先将密度值按相等间隔Δσ分组,分组数n 与标本总块数的关系在对数坐标中呈线性变化,如表所示。
表 分组数与标本总块数的关系 标本数 30 40~80 60~80 80~100 100~120 120~140 140~170 170~200 分组数4567891011然后统计每一密度间隔中的标本块数N 1,并算出其占总标本数的百分比,此百分比即为该间隔密度出现的频率ƒ1=(N 1-N 2)×100%,以密度值为横坐标,以ƒ1为纵坐标,点出每一组密度值所对应的频率坐标点,将所有的点相连得出频率分布曲线(如图所示)。