高中数学课题教学设计案例
- 格式:doc
- 大小:2.25 MB
- 文档页数:21
高中数学课题研究教案课题:利用数学求解实际问题目标:学习通过数学知识解决实际问题,培养学生的思维能力和实践能力。
教学目标:1.了解数学在实际问题中的应用和意义。
2.培养学生的问题分析和解决能力。
3.运用数学知识解决实际问题。
教学内容:1.实际问题的问题提取和分析。
2.利用数学知识建立模型。
3.求解模型,得出结论。
教学过程:1.导入(5分钟)通过一个生活中的实际问题引导学生思考,如何利用数学知识解决该问题。
2.讲解(15分钟)讲解如何从实际问题中提取数学问题,并建立数学模型。
介绍常用的数学方法和技巧。
3.练习(20分钟)让学生在小组或个人中进行练习,选择一个实际问题,提取数学问题并建立模型。
4.检查(10分钟)对学生的建模过程和答案进行检查,引导学生思考解决问题的方法和步骤。
5.总结(10分钟)总结本节课的教学内容,强调数学在实际问题中的应用和重要性。
6.作业布置(5分钟)布置作业:选择一个实际问题,提取数学问题并建立模型,写出解题过程和结论。
教学资源:1.教材资料:相关高中数学教材章节。
2.实际问题案例:生活中的实际问题,供学生实践练习。
评价方式:1.课堂表现:学生在课堂上的积极参与和思考能力。
2.作业评定:学生的作业完成情况和解题过程。
3.小组讨论:学生在小组中合作解决问题的能力。
教学反思:1.如何更好地引导学生思考和分析实际问题?2.如何提高学生建模和解决问题的能力?3.如何更好地利用实际问题培养学生的实践能力和创新意识?通过本节课的学习,学生将能够更好地理解数学在实际生活中的应用和重要性,培养解决问题的能力和方法。
希望学生在今后的学习和生活中能够更加灵活和有效地运用数学知识解决实际问题。
高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。
“二面角”是人教版《数学》第二册(下B)中9.7的内容。
它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。
因此,它起着承上启下的作用。
通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
高中数学优秀教学案例范文第1篇一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。
二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。
教学难点:终边相同角的集合的表示;区间角的集合的书写。
三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?高中数学优秀教学案例范文第2篇教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
数学高中教学设计(优秀5篇)高中数学教学设计篇一教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的`前项和。
(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。
公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。
等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列、等比数列的数列求和问题。
教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。
高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
高中数学教学设计案例【精彩9篇】高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二1.把握菱形的判定。
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3.通过教具的演示培养学生的学习爱好。
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法。
2.教学难点:菱形判定方法的综合应用。
四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质。
高中数学教案实例【篇一:高中数学教学案例】课题 : 2.1.2指数函数及其性质一、教学设计思路:1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。
我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。
只是从一个角度看函数是片面的。
本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。
2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。
二、教案【篇二:高中数学课堂教学设计案例一则】高中数学课堂教学设计案例一则默认分类2009-10-11 07:29阅读69评论0字号:大中小新课程标准下的高中数学课堂教学设计案例一则一、课堂教学改革势在必行新课标的基本理念是:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识。
高度概括地说,老师的教与学生的学就是自主、合作、创新。
所谓自主就是尊重学生学习过程中的自主性、独立性,即在学习的内容上、时间上、进度上,更多地给学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会;合作就是学生之间与师生之间的互动合作,平等交流;创新就意味着不固步自封、不因循守旧、不墨守成规。
传统的教学方式一般以组织教学、讲授知识、巩固知识、运用知识和检查知识来展开,其基本做法是:以纪律教育来维持组织教学,以师讲生听来传授新知识,以背诵、抄写来巩固已学知识,以多做练习来运用新知识,以考试测验来检查学习效果。
高中数学教案教学设计10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教案教学设计10篇作为学校的一名老师,经常需要准备一份优秀的教案,借助教案可以让教学工作更科学化。
高中数学教学设计案例作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学获得成功、提高教学质量的基本条件。
那么大家知道正规的教案是怎么写的吗?下面是由作者给大家带来的高中数学教学设计案例7篇,让我们一起来看看!高中数学教学设计案例篇1教学目标:1。
通过生活中优化问题的学习,体会导数在解决实际问题中的作用,增进学生全面认识数学的科学价值、运用价值和文化价值。
2。
通过实际问题的研究,增进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:如何建立实际问题的目标函数是教学的重点与难点。
教学进程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的运用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。
几何方面的运用(面积和体积等的最值)。
2。
物理方面的运用(功和功率等最值)。
3。
经济学方面的运用(利润方面最值)。
三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解运用题一样有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一样的求法加以简化,其步骤为:S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而肯定为函数的最大(小)值,必要时作答。
高中数学课程可选内容的资源-------数学建模、数学课题学习的教学设计的案例1.升旗中的数学问题(一)问题情景和任务问题情景:在不同地区,同一天的日出和日落时间不尽相同;对一个地区而言,日出日落时间又是随日期的变化而变化的。
北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分日期的升、降旗时刻表:任务1:试根据上表提供的数据,分析升、降旗时间变化的大致规律;建立坐标系,将以上数据描在坐标系中;任务2:分别建立日出时间和日落时间关于日期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间;任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进自己的模型。
任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和日落”的时间,建立一个函数关系。
(二)实施建议与说明通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学建模的基本过程,增强数学知识的应用意识。
理解用函数拟合数据的方法,提高对数据的观察、分析、处理、从中获取有益信息的能力。
在这个探求活动中,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。
1.组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。
2. 任务1的建议:为了便于在坐标系中观察表中数据,选择适当的计量单位,如升旗时刻以10分之为一个单位,日期可以天为单位,即1月1日为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点,3.任务2的建议:利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数,作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数中的作用;4.任务3的建议:根据观察坐标平面上所绘制点的走向趋势,可以考虑分段拟合函数。
5.“成果报告”的书写建议成果报告可以下表形式呈现。
表1:探究学习成果报告表年级班完成时间5.成果交流:建议以小组为单位,选出代表,在班级中报告研究成果,交流研究体会。
6.评价建议:在评价中,采用自评、互评、教师评价相结合的形式,善于发现别人工作中的特色,以下几个方面的内容可作为重点考虑:(1)求解过程和结果:合理、清楚、简洁;(2)独到的思考和发现;(3)提出有价值的求解设计和有见地的新问题;(4)发挥组员的特长,合作学习的效果;(5)合理使用技术;(6)查阅文献,获取信息的能力。
(三)教学参考信息第七届数学知识应用初赛试题题目:在不同地区,同一天的日出和日落时间不尽相同;对一个地区而言,日出日落时间有时虽日期的变化而变化的。
北京的天安门广场上的国旗每天伴着太阳升起,伴着太阳降落。
表1是天安门广场2003年部分日期的升旗时刻,表2是天安门广场2004年2月部分日期的升旗时刻。
请回答下面的问题:(1)建立坐标系,将表1数据描在坐标系中;(2)根据已给数据建立数学模型,估算2004年“五一”国际劳动节的升旗时间;(3)如果你打算在“五一”观看升旗,选择什么时间到达观看点?表1表2解:(1)将数据描在坐标系中,如图1-23(2)天体运动具有很强的周期性,所以日出日落时间成周期变化。
观察题内两表,2003年2月10日升旗时间是7:14,2004年2月9日是7:15,2月11日是7:13,可以认为,在这几天,两年的升旗时间是相同的;2003年3月2日升旗时间是6:47,2004年2月27日是6:52,2月29日是6:49,再过两天就是3月2日,显见,在这几天,两年的升旗时间也是相同的。
于是可以进一步认为,2003年和2004年同期的升旗时间基本上是相同的。
在观察2003年的图像,整体来看与余弦函数相象。
但就局部来看,从2月末到5月中旬,这些点基本上是共直线的(5月1日正在这个范围内),从7月中旬到12月初也如此。
因此,以线性函数为模型,用已知数值拟合出函数,估算五一节的升旗时间。
不妨设函数模型为 y=ax+b x ∈[3 , 5.5]取4月28日的5:19和5月16日的4:59,因为升旗时间是早上,所以5月16日就记作31155,5月1日就记作5,于是有:⎪⎪⎩⎪⎪⎨⎧+=+=b a b a 31155605943027460195 得 y=-0.5709x+8.114对于 x=5,有 y=-0.5709⨯5+8.114=5.26 5.26月为5:15所以,2004年“五一”国际劳动节的升旗时间约为5:15。
(3)因为5:15是个近似值,且是估值,为了确保不误事,所以,2004年“五一”观看升旗,就应该在4:59(2003年5月16日的升旗时刻)至5:15这段时间到达。
2. 正方体截面的形状(一)问题情景与任务用一个平面去截正方体,截面的形状是什么样的? 1.给出分类的原则(例如:按截面图形的边数分类)。
按照你的分类原则,能得到多少类不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图。
2. 如果截面是三角形,你认为可以截出几类不同的三角形? 3. 如果截面是四边形,你认为可以截出几类不同的四边形? 4*. 证明上面的结果。
5*. 截面多边形的边数最多有几条?请说明理由。
6*. 截面可能是正多边形吗?可能有几种?画出示意图。
7*. 如果截面是三角形,其面积最大是多少?画出示意图。
8*. 你还能提出哪些相关的数学问题?(二)实施建议与说明图1—23该课题学习设计的意图1. 按课标要求,在高中阶段至少要有一次数学探究活动和数学建模活动,而活动的开展是要有一个渐近的过程的,学生需要一个逐步适应、了解和认识自主探究、学习的过程,所以在本模块设计该课题,是为实施更为完整的数学探究、数学建模活动做准备。
2. 该课题涉及内容:点、线、面的位置关系及直观图画法。
涵盖了立体几何中的相当多的概念、定理,本课题学习的过程是对立体几何知识的一次全面的综合应用的过程。
3. 该课题的学习很好的体现了立体几何初步一章的基本要求:有助于认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
4. 在本章末安排该课题学习,一方面给学生提供一个施展所学的舞台;另一方面,也达到了借此课题的研究促进学生对所学的应用和反思,加深对空间图形的认识和理解。
此外,该课题的学习有助于发展学生自主学习的能力,体验数学研究的过程,认识数学研究中直观和严谨、感性猜测和理性推理的关系,鼓励学生发挥自己的想像力和创造力。
课题学习的实施建议采用形式:形式一(能有效节省课时,但要求学生已初步具备一些自主探索、学习的经验和能力):首先分组(2-3人)进行课下讨论研究,适学生情况,可建议学生通过实验操作进行研究,最后形成小组的学习报告。
然后,根据学生的学习报告完成情况,在课上让部分小组报告他们所得到的结果,阐述理由。
并回答教师或其他学生提出的问题,共同研究讨论。
形式二(需要较多课时,适合于没有自主探究、学习的习惯和经验的学生,有利于他们初步认识、了解自主学习的开展):让学生课前准备几个正方体模型,课堂上教师引导学生探索、讨论、发现。
可以让学生前后桌四人一组,对引导问题逐一研究讨论,分组报告研究结果,阐述理由,并接受教师和学生的质疑。
对课上未能很好解决的问题,或是由此而引发的新的问题,可以布置给学生课下去探索、研究,并完成研究报告。
根据情况,可以适当安排时间让学生报告。
教学实施中要注意的几个问题:1.无论是课下指导,还是课上教学实施过程之中,教师都要注意引导学生从直观、感性的猜测,到严密、理性的思考和推理论证上来,帮助学生认识到两者在数学研究中的关系;注意引导学生积极地发现、吸纳他人的长处和优点,使学生学会欣赏别人,并从中吸取友谊经验;注意帮助学生清楚、一致地表述自己的观点;注意帮助学生对自己的思维活动进行反思、调节自己的思维活动。
2.采用形式一时,教师应注意及时了解学生研究的进展情况,加强对学生自主研究、学习的指导;对没能在课上进行报告的小组,要进行及时鼓励性评价,积极肯定其长处,并指出不足之处,做到关注每一个学生。
目的是让所有学生从中受益。
3.采用形式二时,教师除了要关注1.中要点外,要特别注意是引导学生进行主动研究、学习,而不是取而代之,自己给学生讲解。
此外,在布置的课下任务中,可以适当拓宽一些,不必仅局限于该课题学习内容本身。
如:(Ⅰ)通过对正方体棱上点确定的截面的作图方法的了解,利用几何画板制作课件,通过课件进行研究。
(Ⅱ)研究满足某些特定条件的截面形状及性质:与棱平行的截面;与体对角线垂直的截面;等分正方体的截面等。
(Ⅲ)一个装有定量液体(不满)的封闭中空的正方体随着位置的某种规则(如:以一棱为轴旋转)变化,液体与正方体各接触面的面积有怎样的性质,各接触面之间有怎样的关系?处于何位置时接触面最小?何位置时液面面积最小?(Ⅳ)研究其它几何体截面形状。
4.帮助、指导学生完成课题学习报告特别是以下几个方面:课题学习中发现的新问题,可拓展的或与其相关的问题;课题研究的自我评价,包括探究方法或原理的合理性、特色或创新点、不足之处等;课题学习的反思和体会,包括他人的哪些工作、研究方法是值得你学习借鉴的,某种特别的感受等。
(三)教学参考信息1.课题学习报告的结构形式:“正方体截面形状问题”课题学习报告年级班完成时间若上表填写时地域不够,可以自己增加副页,也可以自己设计一个研究报告的报表。
2.课题研究的部分结论(1)多边形的种类:三角形,四边形,五边形,六边形。
(2)截面三角形只能是锐角三角形(可以是等腰,等边).如图1-21,22222''a b c b c=+<+,由预先定理222cos02b c aAbc+-=>,所以边a所对角为锐角,同理可得其余角也为锐角。
或由图可知边a所对顶点在以a为直径的圆外,所以该角为锐角,同理其余角也为锐角。
(3)因为正方体的六个面中,有三对平行面,截面多边形的边是平面与正方体的面的交线,所以截面多边形最多是六边形,其中四边形截面至少与一组平行面相交,所以四边形中至少有一对边平行。
截面多边形可以是正方形,矩形,菱形,平行四边形,等腰梯形,其它梯形。
五边形截面至少与两组平行面相交,所以有两组平行边,所以必然有两内角相等。
六边形截面一定与三组平行面都相交,所以必有三组平行边,所以有三组相等内角。
(4)截面多边形可以是正三角形,正四边形和正六边形。
建议教师提出下列相关引申的问题:①满足特定条件的截面多边形形状:*与正方体一棱垂直的平面,截得的截面多边形只能是正方形;*与正方体的一条棱平行的平面,截出的截面多边形只能有正方形,矩形;*与正方体的以体对角线垂直的平面,截得的截面多边形只能有正三角形,各内角相等图1-21的六边形;过正方体中心的平面,截得的截面都是中心对称的多边形,具体的只能有正方形,矩形,菱形,平行四边形,对边相等的六边形;*与正方体的一面对角线平行的平面,截得的截面多边形只能是等边三角形,等腰三角形,等腰梯形,正方形,矩形,菱形,可拆分成一个等腰三角形和等腰梯形的五边形,可拆分成两个等腰梯形的六边形。