AspenPlu反应器模拟介绍
- 格式:ppt
- 大小:1.03 MB
- 文档页数:70
ASPENPLUS反应器的模拟与优化解读ASPEN Plus是一种流程模拟软件,广泛应用于化工工程、能源工程等领域。
它可以帮助工程师通过建立模型和进行仿真,预测和优化化工流程。
在化工生产过程中,反应器是一个重要的组件,ASPEN Plus能够进行反应器的模拟和优化解读,从而帮助工程师改进反应器的设计和操作条件,提高生产效率和产品质量。
首先,ASPEN Plus可以帮助工程师建立反应器的模型。
在ASPENPlus中,用户可以选择适当的反应器模型,如气相反应器、液相反应器、固相反应器等。
然后,用户可以输入反应器的物理和化学性质的数据,如反应器中的反应物浓度、反应速率常数、活化能等。
根据这些数据,ASPEN Plus可以进行数值求解,得到反应器中物质的浓度、温度、压力等参数的变化情况。
接下来,ASPEN Plus可以进行反应器的仿真。
在仿真过程中,ASPEN Plus可以帮助工程师分析反应物的转化率、选择性和产率等重要指标。
通过改变反应器的操作条件,如温度、压力、进料流量等,工程师可以观察到这些指标的变化情况。
如果仿真结果与实际情况相符,工程师可以进一步进行优化解读。
最后,ASPEN Plus可以进行反应器的优化解读。
优化是指通过改变操作变量,使得一些目标函数达到最优的过程。
在反应器中,可以将产物收率、能耗、废料生成量等作为目标函数,通过改变反应器的操作变量,如反应温度、催化剂用量等,使目标函数最优化。
ASPEN Plus提供了多种优化算法,如遗传算法、模拟退火算法等,可以自动最优解。
通过ASPEN Plus的模拟与优化解读,工程师可以获得以下信息和结果:1. 反应器的性能评估:ASPEN Plus可以帮助工程师评估反应器的表现,如转化率、选择性和产率等。
这些信息对于确定反应器的效果并进行性能改进至关重要。
2. 最优操作条件:通过优化解读,ASPEN Plus可以帮助工程师确定反应器的最佳操作条件,如温度、压力、进料流量等。
ASPENPLUS介绍及模拟实例ASPENPLUS具有广泛的应用领域,包括石化、炼油、化肥、热力、制药、生化工程等。
它可以用于模拟各种化工过程,例如分离、混合、反应、蒸馏、液-液/气-液萃取、吸收、脱吸附、干燥等。
ASPENPLUS使用了一套成熟的计算方法和数学模型,可以准确地预测化工过程的性能指标,为工程师提供决策支持。
ASPENPLUS的建模过程包括定义组分、定义装置流程、定义物理特性、定义热力学模型、定义操作条件、定义单元操作、定义修正参数等。
用户可以根据具体的工艺流程需求,选择不同的模拟单元进行组合,以实现整个过程的模拟。
在模拟过程中,用户可以通过调整操作条件和设备参数,进行优化设计,以实现最佳的性能。
下面以丙烯酸酯生产过程为例,介绍ASPENPLUS的模拟实例。
丙烯酸酯是一种重要的化工原料,广泛应用于合成高分子材料、油墨、粘合剂等。
其主要生产过程是通过异丁烯与甲基丙烯酸酯在催化剂存在下进行反应生成。
为了实现丙烯酸酯的高选择性产率,需要优化反应过程的操作条件和装置结构。
首先,在ASPENPLUS中定义组分,包括异丁烯、甲基丙烯酸酯、丙烯酸酯和副产物。
然后,定义装置流程,包括进料反应器、分离塔和产品收集器。
接下来,定义物理特性,如温度、压力、流量等。
充分考虑物料的热力学性质,确保模拟过程的准确性。
在物理特性定义完成后,需要定义热力学模型。
根据反应过程的实际情况,选择适当的热力学模型,并确定模型参数。
在反应过程中,可以设置反应器的温度、压力和催化剂的用量,以及反应物的摩尔比例。
定义好热力学模型后,需要定义操作条件。
根据实际工艺需求,设置反应器的温度和压力,以及进料和产物的流量。
可以使用ASPENPLUS提供的优化算法,通过调整操作条件,实现产物选择性的优化。
最后,定义单元操作,包括进料反应器、分离塔和产品收集器的模型和参数。
分离塔的模型可以选择蒸馏、吸收或萃取等。
通过定义修正参数,可以对模拟过程进行细致的调整和修改,以实现更准确的模拟结果。
ASPEN-PLUS-反应器模拟教程简介什么是Process FlowsheetProcess Flowsheet(流程图)可以简单理解为设备或其一部分的蓝图.它确定了所有的给料流,单元操作,连接单元操作的流动以及产物流.其包含的操作条件和技术细节取决于Flowsheet 的细节级别.这个级别可从粗糙的草图到非常精细的复杂装置的设计细节.对于稳态操作,任何流程图都会产生有限个代数方程。
例如,只有一个反应器和适当的给料和产物,方程数量可通过手工计算或者简单的计算机应用来控制。
但是,当流程图复杂程度提高,且带有很多清洗流和循环流的蒸馏塔、换热器、吸收器等加入流程图时,方程数量很容易就成千上万了。
这种情况下,解这一系列代数方程就成为一个挑战。
然而,叫做流程图模拟的电脑应用专门解决这种大的方程组,Aspen PlusTM,ChemCadTM,PRO/IITM。
这些产品高度精炼了用户界面和网上组分数据库。
他们被用于在真是世界应用中,从实验室数据到大型工厂设备。
建你的工作表。
这里选择blank simulation。
Aspen PlusTm的模拟引擎独立于它的图形用户界面(GUI)。
你可以在一个电脑上使用GUI创建你的模拟,然后运行连接到另一个电脑的模拟引擎。
这里我们使用Local PC模拟引擎。
缺省值不变。
点击OK。
下一步就是Aspen PlusTM主应用窗口——空白的流程图窗口。
先熟悉下界面。
状态信息Flowsheet Not Complete一直持续到完整的流程描述进入窗口,完成后状态信息会变为Required Input Incomplete(所需输入未完成)。
一个模拟只有在状态信息显示Required Input Complete(所需输入完成)时才能运行。
对于最简单的流程图,必须有两股物流,一个FEED,一个PRODUCT,连接到单元操作设备,叫做REACTOR。
模型库工具条(Model Library Toolbar):这个工具条包含Aspen Plus不同操作单元的内置模型。
ASPENLUS反应器模拟教程第一步是创建一个新的ASPEN Plus工程。
打开软件后,选择“File”,然后选择“New”创建一个新的工程。
在弹出的对话框中,输入工程的名称和路径,并选择一个空白模板。
点击“OK”创建工程。
第三步是定义反应器。
选择“Reactor”选项卡,然后点击“Add”添加反应器。
在弹出的对话框中,选择反应器类型,例如理想反应器、柱塞反应器、流动床反应器等。
根据需要,设置反应器的相关参数,例如容积、温度、压力等。
点击“OK”添加反应器到工程中。
第四步是定义反应。
选择“Reactions”选项卡,然后点击“Add”添加反应。
在弹出的对话框中,选择反应类型,例如气液相反应、液体相反应等。
根据反应方程式,输入反应的化学方程式,并设置反应的参数,例如反应速率常数。
点击“OK”添加反应到工程中。
第五步是设定约束条件。
选择“Specifications”选项卡,然后点击“Add”添加约束条件。
在弹出的对话框中,选择需要约束的参数,例如物质转化率、温度、压力等。
根据需要,设置参数的取值范围或固定值。
点击“OK”添加约束条件到工程中。
第六步是运行模拟。
点击工具栏上的“Run”按钮开始模拟过程。
ASPEN Plus将根据设定的反应器和反应条件进行仿真计算,并输出结果。
在仿真过程中,可以监视反应器内物质转化率、温度、压力等参数的变化情况。
第七步是分析结果。
在模拟结束后,可以查看和分析模拟结果。
选择“Results”选项卡,然后点击不同的结果子选项卡,例如“Conversion”,“Temperature”,“Pressure”等。
在结果窗口中,可以查看各个参数的变化曲线图,并对结果进行进一步分析。
除了上述基本步骤之外,ASPEN Plus还提供了许多高级功能和工具,例如灵敏度分析、优化设计等。
可以根据具体的需求和应用场景,进一步探索和应用这些功能。
总结起来,ASPEN Plus反应器模拟教程包括创建工程、添加组件、定义反应器和反应、设定约束条件、运行模拟和分析结果等步骤。
“ASPEN Plus 应用基础”练习四化学反应器模拟1、 乙苯脱氢生产苯乙烯的反应方程式为:22565256H CH CH H C H C H C +=−⎯→←−cat反应速率方程为s kg kmol K p p p k r p c B A A ⋅⎥⎦⎤⎢⎢⎣⎡−=−/反应于T=898 K 下在列管式反应器中等温等压进行。
列管反应器由260根内径50mm 的圆管构成,管内填充的催化剂堆积密度为700kg/m 3,管内的流动模式可视为平推流,流体流经反应器的压降为0.02MPa 。
在反应条件下的反应速率常数k=1.68×10-10 kmol/kg ⋅s ,平衡常数Kp=3.727×104 Pa 。
进料流量为128.5 kmol/hr ,压力P=0.14MP ,其中乙苯浓度为0.05(摩尔分率),其余为水蒸汽。
求乙苯的最终转化率为60%时所需的反应管长度。
2、甲醛和氨按照以下化学反应生成乌洛托品:()(D)(C)(B)(A)O6H N CH HCHO 64NH 24623+→+ 反应速率方程式如下: 23/A A B r kC C kmol m s −=⋅式中:7622.57101420exp /k m kmol s RT ⎡⎤×=−⋅⎢⎥⎣⎦反应器容积为5 m 3,装填系数为0.6,输入氮气作为保护气体。
为了保证釜内的惰性环境,输入氮气量应该使出釜物料的气相分率保持在0.001左右。
加料氨水的浓度为 4.1 kmol/m 3,流量为32.5 m 3/hr 。
加料甲醛水溶液的浓度为 6.3 kmol/m 3,流量为32.5m 3/hr ,加料温度为35°C 、反应器冷却负荷为-3000kW 。
求:乌洛托品的产量和输入氮气流量 ,并分析加料温度在20~40°C 范围里变化(A ) (B )(C )对甲醛转化率的影响。
3、现有一生产能力为1000吨/日氨的四段冷激式氨合成塔,各催化剂床层的进口温度和进、出口氨浓度如下:层数 进口温度(°C ) 进口氨浓度(%mol ) 出口氨浓度(%mol )1 410 2.0 8.02 430 6.9 9.53 418 8.4 10.5 4 426 9.9 12.0已知原料气温度为141 °C ,压力为15 MPa ,组成(%mol )为NH 3 CH 4 Ar N 2 H 22.0 11.0 2.3 22.2 62.5求:1、 各股冷激气量占总原料气量的分率;2、 各催化剂床层出口气体温度;3、 原料气的体积流量。
煤制乙二醇工艺AspenPlus模拟参数25万t/a物性估算一、运行类型:Property Estimation二、物质基本性质1、亚硝酸甲酯英文缩写:MN 分子结构:分子量:61.04沸点:-12℃2、草酸二甲酯英文缩写:DMO 分子结构:分子量:118.09沸点:163.5℃3、碳酸二甲酯英文缩写:DMC 分子式:分子量:90.08沸点:52℃N OOCH3OO OOCH3 CH3OOOCH3CH3模型方法过程涉及到的物系为强非理想物系,故选用NRTL模型中的NRTL-RK方程作为物性方程,汽相采用RK方程,液相采用NRTL 方程。
工艺参数一、MN再生反应工艺参数该反应在反应精馏塔中完成,反应式及动力学方程如下:动力学方程:上式中r为硝酸甲酯的生成速率,单位为kmol/(m3〃s);PNO 和PO2别为NO和02的气相分压,单位为Pa。
模拟的条件如下:反应精馏塔的总塔板数为40块,液相甲醇自塔的上部第6块板进料,来自于偶联反应后含有NO的不凝气从塔下部第24块板下部入塔,即设置的反应段级数为9级;反应的停留时间设置为8 second;塔顶气相采出量为1204.4Kmol/h,塔顶液相回流量为424 Kmol/h。
二、DMO合成反应工艺参数该反应采用转化率模型代替动力学过程表示反应过程。
以亚硝酸甲酯为基准,其转化率为81%,而草酸二甲酯的选择性为90%。
含有亚硝酸甲酯的混合气与CO混合后,预热至135℃,然后通过固定床反应器进行催化偶联反应。
三、偶联反应产物冷凝吸收过程的工艺参数过程通过一个填料吸收塔完成,塔顶的气相出料再连接一个冷凝分离器,进一步将洗涤溶剂甲醇冷凝下来,用于溶解草酸二甲酯。
此过程的操作压力为2 bar,吸收塔的理论级数为20,甲醇洗涤液的入塔温度为15℃,吸收塔塔顶气相出料温度为41.8℃,塔釜液相出料温度为46.2℃,塔顶冷凝分离器温度为16.2℃。
四、DMO精馏分离过程的工艺参数采用的精馏塔的理论板数为23块,11块为进料板,摩尔回流比为0.36,塔顶气相的摩尔采出率为0.7086,精馏塔在常压下操作。