1.1分类加法计数原理和分步乘法计数原理
- 格式:ppt
- 大小:1.55 MB
- 文档页数:55
人教A 版,高中数学,选修2-31.1分类加法计数原理与分步乘法计数原理课本第6页,练习1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是 。
(2)从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同路线的条数是 。
【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)分步乘法计数原理要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6。
2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,问:(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)分步乘法计数原理要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60。
3.在例1中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择种数为6410+=。
这种算法有什么问题?【解析】因为要确定的是这名同学的专业选择,并不要考虑学校的差异,所以应当是6+4-1=9(种)可能的专业选择。
课本第10页,练习1.乘积12312312345()()()a a a b b b c c c c c ++++++++展开后共有多少项?【解析】分步乘法计数原理要完成的“一件事情”是“得到展开式的一项”。
由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法。
1.1分类加法与分步乘法计数原理
一、分类计数原理
1.定义:一件事,有n 类办法. 在第1类办法中有m 1种不同的方法,在第2类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,则完成这件事共有n m m m N +⋅⋅⋅++=21
2.各类办法之间相互独立,都能独立的、一次的且每次得的是最后的结果完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理
3.首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.
二、分步计数原理
1.定义:完成一件事,需要分成n 个步骤。
做第1步有m1种不同的方法,做第2步有m2种不同的方法, ……,做第n 步有mn 种不同的方法,则完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21
2.各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,缺少任何一步都不能完成这件事,将各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理
3.首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.
三.分类加法与分步乘法计数原理的区别与联系
四.典型三个问题:
1.投信问题(例题:3个班分别从5个风景点中选择一处游览,不同选法的种数是多少?)
2.区域上色问题:逐块上色,但有时若一个区域上色影响到另一个区域上色的方法数时,应分类讨论. 常对对角区域同色或不同色分类.
例题:如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有多少种?(校本29)
3. 位置全错乱问题:(1)3人位置全错乱 (2种)
(2) 4人位置全错乱 (9种)。
第2课时分类加法计数原理与分步乘法计数原理的应用学习目标:1.进一步理解和掌握分类加法计数原理与分步乘法计数原理.(重点)2.能根据具体问题的特征,选择两种计数原理解决一些实际问题.(重、难点)3.会根据实际问题的特征,合理地分类或分步.(难点、易混点)[自主预习·探新知]1.分类加法计数原理与分步乘法计数原理的区别和联系(1)联系:分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题.(2)区别:分类加法计数原理针对的是分类问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事.分步乘法计数原理针对的是分步问题,各个步骤中的方法相互依存,只有各个步骤都完成之后才算做完这件事.2.应用两个计数原理解决计数问题的标准(1)分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到步骤完整,步与步之间要相互独立,根据分步乘法计数原理,把完成每一步的方法数相乘得到总数.[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )(2)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )(3)有三只口袋装有小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有36种不同的取法.[解析](1)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).(2)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.(3)×分为三类:一类是取白球、黑球,有5×6=30种取法;一类是取白球、红球,有5×7=35种取法;一类是取黑球、红球,有6×7=42种取法.所以由分类加法计数原理共有30+35+42=107(种)不同的取法.[答案](1)√(2)×(3)×2.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条A[第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.]3.由1,2,3,4组成没有重复数字的三位数的个数为________.【导学号:95032014】24[由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.]4.一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.9 20[由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种选派方法,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种选派方法.][合作探究·攻重难]另2名既会下象棋又会下围棋.现在从这7人中选2人分别同时参加象棋比赛和围棋比赛,共有多少种不同的选法?【导学号:95032015】[思路探究]本题应先分类,再分步.确定分类标准→确定类数→逐类分步计算→结论[解]法一:分四类:第1类,从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有选法3×2=6(种);第2类,从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,有选法3×2=6(种);第3类,从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,有选法2×2=4(种);第4类,从2名既会下象棋又会下围棋的学生中各选1名分别参加象棋比赛和围棋比赛,有选法2×1=2(种).故不同的选法共有6+6+4+2=18(种).法二:分两类:第1类,从3名只会下象棋的学生中选1名参加象棋比赛,这时7人中还有4人会下围棋,从中选1名参加围棋比赛.有选法3×4=12(种).第2类,从2名既会下象棋又会下围棋的学生中选一名参加象棋比赛,这时7人中还有3人会下围棋,从中选1名参加围棋比赛.有选法2×3=6(种).故不同的选法共有12+6=18(种).1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?[解]法一:(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二:(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).位数?(3)四位奇数?【导学号:95032016】[思路探究](1)利用分步乘法计数原理;(2)数字“0”不能排在首位,先排首位,再用分步乘法计数原理;(3)注意到个位只能是“1或3”,首位不能是“0”,然后利用分步乘法计数原理计算.[解](1)完成“组成无重复数字的四位密码”这件事,可以分为四步:第一步,选取左边第一个位置上的数字,有5种选取方法;第二步,选取左边第二个位置上的数字,有4种选取方法;第三步,选取左边第三个位置上的数字,有3种选取方法;第四步,选取左边第四个位置上的数字,有2种选取方法.由分步乘法计数原理,可以组成不同的四位密码共有N=5×4×3×2=120个.(2)直接法:完成“组成无重复数字的四位数”这件事,可以分四步:第一步,从1,2,3,4中选取一个数字作千位数字,有4种不同的选取方法;第二步,从1,2,3,4中剩余的三个数字和0共四个数字中选取一个数字作百位数字,有4种不同的选取方法;第三步,从剩余的三个数字中选取一个数字作十位数字,有3种不同的选取方法;第四步,从剩余的两个数字中选取一个数字作个位数字,有2种不同的选取方法.由分步乘法计数原理,可以组成不同的四位数共有N=4×4×3×2=96个.间接法:将5个数字不重复排在4个位置上有5×4×3×2=120种排法,其中不合要求的有4×3×2=24种排法.所以排成无重复数字的四位数为120-24=96个.(3)完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步,定个位,只能从1,3中任取一个有2种方法;第二步,定首位,把1,2,3,4中除去用过的一个还有3个可任取一个有3种方法;第三步,第四步把剩下的包括0在内的还有3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理共有2×3×3×2=36个.2.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起.(1)可组成多少个不同的三位数?(2)可组成多少个不同的三位偶数?[解](1)先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种取法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理.共可以组成7×7×6=294(个)不同的三位数.(2)首先分两类,第一类是0排个位,由分步乘法计数原理得1×7×6=42个.第二类是2,4,6排个位,由分步乘法计数原理得3×6×6=108个,所以由分类加法计数原理为42+108=150个.1.用3种不同颜色填涂图111中A,B,C,D四个区域,且使相邻区域不同色,若按从左到右依次涂色,有多少种不同的涂色方案?[提示]涂A区有3种涂法,B,C,D区域各有2种不同的涂法,由分步乘法计数原理将A,B,C,D四个区域涂色共有3×2×2×2=24(种)不同方案.2.在探究1中,若恰好用3种不同颜色涂A,B,C,D四个区域,那么哪些区域必同色?把四个区域涂色,共有多少种不同的涂色方案?[提示]恰用3种不同颜色涂四个区域,则A,C区域,或A,D区域,或B,D区域必同色.由分类加法计数原理可得恰用3种不同颜色涂四个区域共3×2×1+3×2×1+3×2×1=18(种)不同的方案.3.在探究1中,若恰好用2种不同颜色涂完四个区域,则哪些区域必同色?共有多少种不同的涂色方案?[提示]若恰好用2种不同颜色涂四个区域,则A,C区域必同色,且B、D区域必同色.先从3种不同颜色中任取两种颜色,共3种不同的取法,然后用所取的2种颜色涂四个区域共2种不同的涂法.由分步乘法计数原理可得恰好用2种不同颜色涂四个区域共有3×2=6(种)不同的涂色方案.将红、黄、绿、黑四种不同的颜色涂在如图112所示的图中,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?【导学号:95032017】图112[思路探究]给图中区域标上记号A,B,C,D,E,则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色取决于B与D涂的颜色,如果B与D颜色相同有2种,如果不相同,那么只有1种.因此应先分类后分步.[解]法一:给图中区域标上记号A,B,C,D,E,如图所示.①当B与D同色时,有4×3×2×1×2=48种.②当B与D不同色时,有4×3×2×1×1=24种.故共有48+24=72种不同的涂色方法.法二:按涂色时所用颜色种数多少分类:第一类,用4种颜色.此时B,D区域或A,E区域同色,则共有2×4×3×2×1=48种不同涂法.第二类,用3种颜色.此时B,D同色,A,E同色,先从4种颜色中取3种,再涂色,共4×3×2×1=24种不同涂法.由分类加法计数原理共48+24=72种不同涂法.图113B.84D.483.将3种作物种植在如图114所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?[解]从左往右5块试验田分别有3,2,2,2,2种种植方法,共有3×2×2×2×2=48种方法,其中5块试验田只种植2种作物共有3×2×1×1×1=6种方法,所以有48-6=42种不同的种植方法.[当堂达标·固双基]1.定义集合A与B的运算A B如下:A B={(x,y)|x∈A,y∈B},若A={a,b,c},B ={a,c,d,e},则集合A B的元素个数为( )A.34B.43C.12 D.16C[确定A B中元素(x,y),可分为两步,第一步,确定x,共有3种方法;第二步,确定y,有4种方法,根据分步乘法计数原理,共有3×4=12种不同的方法.] 2.某同学逛书店,发现三本喜欢的书,决定至少买其中的一本,则购买方案有( )【导学号:95032018】A.3种 B.6种 C.7种 D.9种C[买一本,有3种方案;买两本,有3种方案;买三本,有1种方案.因此共有购买方案3+3+1=7(种).]3.3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.64[每名同学都有4种不同的报名方案,共有4×4×4=64种不同的方法.]4.现有4种不同的颜色要对如图115所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有________种.图1-1-548[按A→B→C→D顺序分四步涂色,共4×3×2×2=48种不同的着色方法.]5.从0、1、2、3、4、5这些数字中选出4个,问能形成多少个无重复数字且能被5整除的四位数?【导学号:95032019】[解]满足条件的四位数可分为两类.第一类是0在末位的,需确定前三位数,分三步完成,第一步确定首位有5种方法.第二步确定百位有4种方法,第三步确定十位有3种方法.∴第一类共有5×4×3=60个.第二类是5在末位,前三位数也分三步完成.第一步确定首位有4种方法,第二步确定百位有4种方法,第三步确定十位有3种方法.第二类共有4×4×3=48个.∴满足条件的四位数共有60+48=108个.。
1 分类加法计数原理(1)问题 1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N += 种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学 数学化学 会计学医学 信息技术学物理学 法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有( )种专业选择方法,在 B 大学中有( ) 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21 种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 练习1.填空:( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是 ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有 条.2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有 种不同选择;第 2 步,从24 名女生中选出1人,有 种不同选择.根据分步乘法计数原理,共有 种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成. 例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,第一步, m1 = 种,第二步, m2 = 种,第三步, m3 = 种,第四步, m4 = 种,所以根据乘法原理, 得到不同的涂色方案种数共有N =变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去C 村,不同( 2 )从3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.123N m m m =++=4+3+2=9;例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项?2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。