随机过程试卷(更新)
- 格式:pdf
- 大小:317.89 KB
- 文档页数:8
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
1、设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
2、设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量; 且对任意的∞<<∞-t ,)(t W 与R 均独立。
令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。
3、设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个 顾客的消费额是服从参数为s 的指数分布。
求一天内(8个小时)商场营业额的数学期望与方差。
4、设马尔可夫链的转移概率矩阵为:⎪⎪⎪⎭⎫⎝⎛=3.007.08.02.0007.03.0P(1)求两步转移概率矩阵)2(P及当初始分布为0}3{}2{,1}1{000======X P X P X P时,经两步转移后处于状态2的概率。
(2)求马尔可夫链的平稳分布。
5设马尔可夫链的状态空间}5,4,3,2,1{=I ,转移概率矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=010007.03.0000000100004.06.0003.04.03.0P求状态的分类、各常返闭集的平稳分布及各状态的平均返回时间。
6、设{}(),0N t t ≥是参数为λ的泊松过程,计算[]()()E N t N t s +。
7、考虑一个从底层启动上升的电梯。
以i N 记在i 第层进入电梯的人数。
假定i N 相互独立,且i N 是均值为i λ的泊松变量。
在第i 层进入的各个人相互独立地以概率ij p 在第j 层离开电梯,1ijj ip>=∑。
令j O =在第j 层离开电梯的人数。
(1)计算()j E O (2)j O 的分布是什么(3)j O 与k O 的联合分布是什么8、一质点在1,2,3点上作随机游动。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
专升本《随机过程》一、(共52题,共151分)1。
描述随机过程的数字特征包括自相关函数。
方差函数.均值函数以及()(2分) A.协方差函数 B。
样本函数; C.特征函数标准答案:A2. 对于维纳过程以下说法正确的是() (2分)A.是平稳过程 B。
是正交增量过程;C。
是马尔科夫过程。
标准答案:B3。
对于非齐次泊松过程,以下说法正确的是() (2分)A.单位时间内事件发生的平均次数是随时间变化的函数;B。
单位时间内事件发生的时刻是随时间变化的函数;C。
单位时间内事件发生的平均时间间隔是随时间变化的函数;。
标准答案:A4. 高斯过程如果是宽平稳的,那么它必是()(2分)A.独立增量过程; B。
遍历;C。
各态历经; D。
严平稳标准答案:D5. 随机过程是正交增量过程的充要条件是() (2分)A.,都有;B。
,都有;C.,都有.D.,都有;标准答案:D6. 高斯过程通过线性系统后输出为,那么它必是() (2分)A。
严平稳; B。
高斯过程; C。
各态历经 D。
以上均不对标准答案:B7。
假设是参数为的泊松过程,那么复合泊松过程的方差函数可以表示为() (2分) A。
B.;C.D.标准答案:A8. 若是相互独立的随机变量,那么的特征函数描述,正确的是()(2分)A.;B。
;C。
;D.以上均不对。
标准答案:B9. 讨论某随机过程的各态历经性,前提条件是该随机过程必须() (2分)A.严平稳;B.宽平稳;C。
非平稳 D.正交增量过程。
标准答案:B10。
以下条件可以作为判断马尔科夫链遍历的充分条件() (2分)A.,存在整数,使得;B。
,存在整数,使得;C。
,存在整数,使得D。
以上均不对标准答案:B11。
随机过程一般可以理解为二元函数,变量分别为()(3分)A。
随机变量;B.随机模型;C。
时间;D.某常数标准答案:A,C12。
以下哪些自相关函数能够作为平稳过程的自相关函数() (3分)A。
;B.;C.;D.。
标准答案:B,D13。
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
1.设随机变量X 服从参数为的泊松分布,则X 的特征函数为 。
λ2.设随机过程 其中为正常数,和是相互X(t)=Acos( t+),-<t<ωΦ∞∞ωA Φ独立的随机变量,且和服从在区间上的均匀分布,则的数学期望A Φ[]0,1X(t)为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设是与泊松过程对应的一个等待时间序列,则服{}n W ,n 1≥{}X(t),t 0≥n W 从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量,则 这个随机⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(过程的状态空间 。
6.设马氏链的一步转移概率矩阵,步转移矩阵,二者之ij P=(p )n (n)(n)ij P (p )=间的关系为 。
7.设为马氏链,状态空间,初始概率,绝对概率{}n X ,n 0≥I i 0p P(X =i)=,步转移概率,三者之间的关系为 。
{}j n p (n)P X j ==n (n)ij p 8.设是泊松过程,且对于任意则}),({0≥t t X 012≥>t t {(5)6|(3)4}______P X X ===9.更新方程解的一般形式为 。
()()()()0tK t H t K t s dF s =+-⎰10.记 。
()(),0n EX a t M M t μ=≥→∞-→一一一一一一一t +a 得 分评卷 人二、证明题(本大题共4道小题,每题8分,共32分)1.设为三个随机事件,证明条件概率的乘法公式:A,B,C 。
P(BC A )=P(B A )P(C AB) 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设为马尔科夫链,状态空间为,则对任意整数和{}n X ,n 0≥I n 0,1<n l ≥≤,步转移概率 ,称此式为切普曼—科尔莫哥洛夫方程,i,j I ∈n (n)()(n-)ij ik kjk Ip p p l l ∈=∑证明并说明其意义。
Kfc=l解:先求X (r )的均值函数:町X (r )卜E 工“ t=i而:4\~左(広2怎),则:2JT *£[严3)]二J"讪厶如=() =02010级硕士生《随机过程》考试题212设随机过程x Jt 中少为常瓶 人为第k 牛信号的隣机振幅,中出是在上一’{a 加)上均匀分命的随机相位「所以随机变星如 ①上仕“2…川)以及它们2间都足相互独粧的,求*(『)的均值和协方差瞬数.因九 5(—12…用)之间相互独立*则;E x (t )\ = X E [M E[所以:£[x ⑴]二 X E[A ]E [严5 几=0当“j 吋,q 与込相互独立,则蛊1 /巩q %)+( % ®) d =严 g 7 y [严当&=/时,£(严-恥宀)1匸严 EN则X ⑴的协方差函数B x 匕山)=严r )£ E(出)"『)的协方差函数心(片 加)=心(也)"[5)*(胡=e t\e^ E £州严叫)=ttE\1=]>1壮奸勺w 』#(&4)解:状态转移概率如下图所示:集,三个集合中的状态同类,全是正常返;周期全为1(2)(i)1f ii2⑷ 12 11112 1 2f ii ————————23332333 27(3)由于三个集合都是闭集,所以平稳分布分布在各个闭集中求解。
平稳分布的计算公式为:i p ij1, 对C1: {1 ,2,3}13 31 匚,2 — ,3 —488解得:对C2: {4 ,5}14 5 _2解得:对C3: {6}易得:6 1(4) C1: {1 ,2,3}中,各状态的平均返回时间分别是:11 81 8142亠3亠12333C2: {4 ,5}中,11425 — 245C3: {6}中,1 ,6161.设有随机过程 X(“ = Acos((wt) + Bsin(^/),r~i■其中⑵为常数,A,B^和互独立且服从匸态分舟/V(0t r72)的随机变Lb求随机过程的均值和柿关函数。
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。