图形计算机图形学
- 格式:doc
- 大小:17.10 KB
- 文档页数:1
计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机图形学1. 简介计算机图形学是研究如何使用计算机来生成、处理和显示图像的一门学科。
它主要涉及图像的几何和物理特性的建模,以及图像的渲染和表示。
计算机图形学在各个领域中都有广泛的应用,包括游戏开发、电影制作、虚拟现实、医学成像等。
2. 图形学的基本概念图形学的基本概念包括点、线、多边形和曲线等基本元素,以及相应的数学方法和算法。
这些方法和算法用于描述和处理图像的几何特性,包括位置、方向、大小和形状等。
2.1 点和线在计算机图形学中,点是图像中最基本的元素,可以通过坐标系来表示。
线是由两个点之间的连接所形成的,可以通过直线方程或参数方程来描述。
2.2 多边形和曲线多边形是由多个线段连接而成的封闭图形,可以通过顶点的集合来描述。
曲线是由多个点按照一定规律连接而成的,可以通过控制点和插值方法来表示。
3. 图形的几何建模图形的几何建模是计算机图形学中的一个重要研究方向,它涉及如何使用数学模型来表示和描述物体的几何特性。
常用的几何建模方法包括点、线、面、体和曲面等。
3.1 点云和网格模型点云模型是一组离散的点的集合,它可以用于表示不规则形状的物体。
网格模型是一组由三角形或四边形面片组成的表面模型,它可以用于表示规则形状的物体。
3.2 曲面建模曲面建模是基于数学曲面的建模方法,它将物体表面抽象为由曲线和曲面组成的,可以通过控制点和插值方法来表示。
常用的曲面建模方法包括贝塞尔曲线和贝塞尔曲面等。
4. 图形的渲染和表示图形的渲染和表示是计算机图形学中的另一个重要研究方向,它涉及如何将图像的几何信息转化为可视的图像。
常用的渲染和表示方法包括光栅化、光线追踪和纹理映射等。
4.1 光栅化光栅化是将几何对象转化为像素的过程,它涉及将线段或多边形映射到屏幕上的像素点,并进行相应的着色和填充。
常用的光栅化算法包括Bresenham算法和扫描线算法等。
4.2 光线追踪光线追踪是一种以物理光线为基础的渲染方法,它从观察者的视角出发,沿着光线的路径跟踪物体的相交和反射,最终得到图像。
计算机图形学教案第一章:计算机图形学概述1.1 课程介绍计算机图形学的定义计算机图形学的发展历程计算机图形学的应用领域1.2 图形与图像的区别图像的定义图形的定义图形与图像的联系与区别1.3 计算机图形学的基本概念像素与分辨率矢量与栅格颜色模型图像文件格式第二章:二维图形基础2.1 基本绘图函数画点函数画线函数填充函数2.2 图形变换平移变换旋转变换缩放变换2.3 图形裁剪矩形裁剪贝塞尔曲线裁剪多边形裁剪第三章:三维图形基础3.1 基本三维绘图函数画点函数画线函数填充函数3.2 三维变换平移变换旋转变换缩放变换3.3 光照与材质基本光照模型材质的定义与属性光照与材质的实现第四章:图像处理基础4.1 图像处理基本概念像素的定义与操作图像的表示与存储图像的数字化4.2 图像增强对比度增强锐化滤波4.3 图像分割阈值分割区域生长边缘检测第五章:计算机动画基础5.1 动画基本概念动画的定义与分类动画的基本原理动画的制作流程5.2 关键帧动画关键帧的定义与作用关键帧动画的制作方法关键帧动画的插值算法5.3 骨骼动画骨骼的定义与作用骨骼动画的制作方法骨骼动画的插值算法第六章:虚拟现实与增强现实6.1 虚拟现实基本概念虚拟现实的定义与分类虚拟现实技术的关键组件虚拟现实技术的应用领域6.2 虚拟现实实现技术头戴式显示器(HMD)位置追踪与运动捕捉交互设备与手势识别6.3 增强现实基本概念与实现增强现实的定义与原理增强现实技术的应用领域增强现实设备的介绍第七章:计算机图形学与人类视觉7.1 人类视觉系统基本原理视觉感知的基本过程人类视觉的特性和局限性视觉注意和视觉习惯7.2 计算机图形学中的视觉感知视觉感知在计算机图形学中的应用视觉线索和视觉引导视觉感知与图形界面设计7.3 图形学中的视觉错误与解决方案常见视觉错误分析避免视觉错误的方法提高图形可读性与美观性第八章:计算机图形学与艺术8.1 计算机图形学在艺术创作中的应用数字艺术与计算机图形学的交融计算机图形学工具在艺术创作中的使用计算机图形学与艺术的创新实践8.2 计算机图形学与数字绘画数字绘画的基本概念与工具数字绘画技巧与风格数字绘画作品的创作与展示8.3 计算机图形学与动画电影动画电影制作中的计算机图形学技术3D动画技术与特效制作动画电影的视觉艺术表现第九章:计算机图形学的未来发展9.1 新兴图形学技术的发展趋势实时图形渲染技术基于物理的渲染动态图形设计9.2 计算机图形学与其他领域的融合计算机图形学与的结合计算机图形学与物联网的结合计算机图形学与生物医学的结合9.3 计算机图形学教育的未来发展图形学教育的重要性图形学教育的发展方向图形学教育资源的整合与创新第十章:综合项目实践10.1 项目设计概述项目目标与需求分析项目实施流程与时间规划项目团队组织与管理10.2 项目实施与技术细节项目技术选型与工具使用项目开发过程中的关键技术项目测试与优化10.3 项目成果展示与评价项目成果的展示与推广项目成果的评价与反馈重点和难点解析一、图像的定义与图像的定义,图形与图像的联系与区别1. 学生是否能够理解并区分图像和图形的概念。
计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
计算机图形学计算机图形学是研究计算机生成、处理和显示图像的学科领域。
它是计算机科学的一个重要分支,与计算机视觉和图像处理相关。
计算机图形学的发展促进了许多领域的进步,包括动画、游戏开发、虚拟现实等。
一、引言计算机图形学是指通过计算机技术实现图像的生成、处理和显示。
它利用算法和数学模型来模拟和渲染图像,以生成逼真的图像或动画。
计算机图形学在多个领域有着广泛的应用,如电影、游戏、建筑设计等。
二、图形学的基本原理1. 坐标系统图形学中常用的坐标系统是笛卡尔坐标系,它由横轴X、纵轴Y和垂直于二者的Z轴组成。
通过坐标系统,可以定位和描述图像中的点、线和面。
2. 图形的表示图形可以通过几何图元来表示,常见的几何图元有点、线和面。
点由坐标表示,线由两个端点的坐标表示,面由多个点或线组成。
3. 变换和投影变换是指对图像进行平移、旋转和缩放等操作,通过变换可以改变图像的形状和位置。
投影是将三维图像映射到二维平面上的过程,常见的投影方式有平行投影和透视投影。
4. 着色模型着色模型用于为图像添加颜色和材质信息,常见的着色模型有平均着色模型和Phong着色模型。
平均着色模型通过计算图像的平均颜色来实现简单的着色效果,Phong着色模型考虑了光照的影响,能够产生更加逼真的效果。
三、图形学的应用1. 电影和动画计算机图形学在电影和动画领域有着广泛的应用。
通过计算机图形学技术,电影制作人能够创建逼真的特效,包括爆炸、碰撞和飞行等场景。
动画片的制作也离不开计算机图形学的技术支持,它能够实现角色的自由移动、表情的变化等特效效果。
2. 游戏开发计算机图形学是游戏开发中不可或缺的一部分。
游戏中的人物、场景和特效都是通过计算机图形学技术来实现的。
游戏开发人员利用图形学算法和引擎来创建游戏中的3D场景和角色,并通过渲染技术使其看起来逼真。
3. 虚拟现实虚拟现实是一种模拟真实世界的计算机生成环境。
计算机图形学在虚拟现实领域的应用可以让用户身临其境地感受到虚拟环境的存在。
计算机图形学知识点大全计算机图形学是计算机科学中的一个重要分支,涵盖了图像处理、计算机视觉、图形渲染等多个领域。
本文将介绍计算机图形学的一些重要知识点,帮助读者更好地理解和应用这些知识。
一、基础概念1. 图形学概述:介绍计算机图形学的定义、发展历史以及应用领域。
2. 图像表示:探讨图像的表示方法,包括光栅图像和矢量图像,并介绍它们的特点和应用场景。
3. 坐标系统:详细介绍二维坐标系和三维坐标系,并解释坐标变换的原理和应用。
二、图像处理1. 图像获取与预处理:介绍数字图像的获取方式和常见的预处理方法,如去噪、增强和平滑等。
2. 图像特征提取:讲解图像特征提取的基本概念和方法,例如边缘检测、角点检测和纹理特征提取等。
3. 图像分割与目标识别:介绍常见的图像分割算法,如阈值分割、基于区域的分割和基于边缘的分割等,以及目标识别的原理和算法。
三、计算机视觉1. 相机模型:详细介绍透视投影模型和针孔相机模型,并解释摄像机矩阵的计算和相机标定的方法。
2. 特征点检测与匹配:讲解常用的特征点检测算法,如Harris 角点检测和SIFT特征点检测,并介绍特征点匹配的原理和算法。
3. 目标跟踪与立体视觉:介绍目标跟踪的方法,如卡尔曼滤波和粒子滤波,以及立体视觉的基本原理和三维重建方法。
四、图形渲染1. 光栅化:详细介绍光栅化的原理和算法,包括三角形光栅化和线段光栅化等。
2. 着色模型:介绍常见的着色模型,如平面着色、高光反射和阴影等,并解释经典的光照模型和材质属性。
3. 可视化技术:讲解常用的可视化技术,如体数据可视化、流场可视化和虚拟现实等,以及它们在医学、工程等领域的应用。
五、图形学算法与应用1. 几何变换:介绍图形学中的几何变换,包括平移、旋转、缩放和矩阵变换等,并解释它们在图形处理和动画中的应用。
2. 贝塞尔曲线与B样条曲线:详细介绍贝塞尔曲线和B样条曲线的定义、性质和应用,以及它们在曲线建模和动画设计中的重要作用。
计算机图形学的基础和应用计算机图形学是指利用计算机来处理和生成图像的学科。
它是计算机科学的一个重要分支领域,也是多个行业的重要应用之一。
计算机图形学的基础点主要包括: 算法、数据结构、线性代数和几何基础、图形学渲染、计算机视觉等。
而计算机图形学的应用范围却非常广泛,主要包括电影、游戏、建筑、逆向工程、医学等领域。
一、计算机图形学的基础1. 算法计算机图形学的算法主要分为两个方面:在计算机内部绘制图像的算法以及从外部数据得到模型的算法。
前者有数据结构、扫描线算法、射线追踪、阴影、光照、纹理映射等,后者包括骨骼动画、目标追踪和形状重建等算法。
这些算法的基本原理来源于大量的数学和物理学知识,同时需要基于计算机技术进行优化实现。
2. 数据结构计算机图形学中的数据结构主要包括树、网格结构和点云三种。
其中网格结构和点云通常是三维多边形模型的数据承载方式,树则主要用于建立场景图等数据结构。
每种数据结构都具有自己的优势和局限性,这需要根据具体应用场景进行选择。
3. 线性代数和几何基础计算机图形学中,线性代数和几何基础是非常重要的理论基础。
在图形学的应用中,通常需要进行向量和矩阵的计算,并利用几何理论去解决许多问题。
例如,在渲染过程中需要对于光线和交点进行计算,采用线性代数方法可以快速实现。
4. 图形学渲染图形学渲染是计算机图形学的重要子领域,常被用在电影和游戏制作中。
计算机图形学的渲染方式分为四类:光线追踪、栅格化绘制、体绘制和可编程渲染管线。
光线追踪渲染可以模拟光线的传播过程,且能够计算真实的光照效果。
实际上,这种渲染方式是一种“暴力”的方式,需要在计算机上运行庞大的计算量。
栅格化绘制则是采用直接面绘制,常被用于二维和三维场景的渲染。
可编程管线渲染则是当前最流行的渲染方式,其开发程度非常高。
而体绘制则尚处于发展初期,其主要应用于医学成像领域。
5. 计算机视觉计算机视觉是计算机图形学的重要子领域之一,主要研究计算机能够通过图像或视频获取和识别包括物体、人物、场景在内的视觉信息。
第一章概述1、计算机图形学研究的是什么?计算机图形学研究的是通过计算机将数据转换为图形,并在专门的设备上输出的原理、方法和技术。
2、计算机图形学处理的图形有哪些?计算机图形学处理的图形有:专题图件、类似于照片的三维逼真图形、实体的视图、抽象图等。
3、二维图形的基本操作和图形处理算法包含哪些内容?对图形的平移、缩放、旋转、镜像、错切等操作,此外还包括二维图形的裁剪、多边形填充以及二维图形的布尔运算(并、交、差)等。
4、什么叫科学计算可视化技术?这是20世纪90年代计算机图形学领域的前沿课题。
研究的是,将科学计算中大量难以理解的数据通过计算机图形显示出来,从而加深人们对科学过程的理解。
例如,有限元分析的结果,应力场、磁场的分布,各种复杂的运动学和动力学问题的图形仿真等。
5、计算机图形学的应用领域有哪些?计算机图形学处理图形的领域越来越广泛,主要的应用领域有:计算机辅助设计与制造(CAD/CAM)、科学计算可视化、地理信息系统与制图、事务管理和办公自动化、虚拟现实系统、过程控制和指挥系统、计算机动画。
6、计算机图形系统的硬件设备有哪些?硬件设备包括主机、输入设备和输出设备。
输入设备通常为键盘、鼠标、数字化仪、扫描仪和光笔等。
输出设备则为图形显示器、绘图仪和打印机。
7、在彩色CRT的荫罩法技术中,说说每个象素的组成结构?谈谈彩色是如何产生的?彩色CRT显示器中,每个象素位置上分布着呈三角形排列的三个荧光彩色点,三个荧光点分别发射红光、绿光和蓝光。
这样的彩色CRT有三支电子枪,分别与三个荧光点相对应,即每支电子枪发出的电子束专门用于轰击某一个荧光点。
屏幕上的荧光点、荫罩板上的小孔和电子枪被精确地安排处于一条直线上,使得由某一电子枪发出的电子束只能轰击到它所对应的荧光点上。
这样,只要调节各电子枪发出电子束的强弱,即可控制各象素中三个荧光点所发出的红、绿、蓝三色光的亮度。
于是我们可以根据彩色中所含红、绿、蓝三色的数量,以不同的强度激励三个荧光点,从而可以产生范围很广的彩色。
计算机图形学2009~2010学年第一学期期末考试
(A卷)
一、概念(每题3分共15分)
区域填充计算机图形学
裁剪齐次坐标插值
二、简述(每题5分共25分)
1 光栅扫描显示结构
2 图形学的应用领域
3 图形显示的坐标变换过程
4三维形体的模型表示形式
5曲线曲面的描述方法和三种基本形式
三、计算(共31分)
1写出基于(3,4)为中心对图形放大Sx=2和Sy=3的二维变换矩阵( 6分)
2已知多边形为P1P2P3P4。
顶点坐标依次为(0,0)、(6,2)、
(4,6)、(0,4),试写出该多边形的有序边表(7分) 3 已知曲线的两端点为P1(1,1)、P2(4,2),两端点处的切向量P1’为(1,1)和P2’为(1,-1),试求出Hermite 插值多项式,并计算出X和Y的参数表达式(10分)
4 利用线段裁剪的Cohen-Sutherland算法,对线段AB进行裁
剪(Xl、Xr、Yb、Yt为裁剪框)。
简述裁剪的基本过程。
(7分)Yt
Yb
四、编写算法(每题15分共30分)
1 编写圆弧基于矩形窗口的裁剪算法
2 写出Z缓冲消隐算法
1。