lc并联谐振回路计算
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
rl并联谐振电路
RL并联谐振电路是由一个电感器(L)和一个电阻器(R)组
成的并联电路,在理想情况下,电感器和电阻器之间没有电容器。
当电路中的交流电源频率等于谐振频率时,即
ω = 1/√(LC)
其中,ω为电源的角频率,L为电感的感值,C为电容的容值。
在谐振频率下,电路中的电感器和电阻器之间的阻抗最小,电流最大。
此时,电感器的感抗(XL)和电阻器的阻抗(R)之间存在共振,电压相位差为0。
谐振频率下的电路传输特性具有很多应用,比如用于信号滤波、放大器、射频电路等。
如何计算电路的谐振频率谐振电路都有一个特点,容抗等于感抗,电路呈阻性那么就有ωL=1/ωC因为LC都是有知条件,那么可以把谐振的频率点算出来品质因数Q=ωL/R,所谓品质因数如果为28,那么并联的谐振电路就是电流减少了28倍;如果是串联的谐振电路,那么就是电压增加了28倍.那么现在串联谐振点下的电压为施加的电压乘以品质因数如果已知条件告诉你的施加电压为峰值,那么就直接相乘;如果已知条件告诉你的施加电压为有效值,那么还需要将算出来的电压再乘以1.414得出峰值补充回答:你想想看,因为有个前提条件ωL=1/ωC品质因数Q=ωL/R,我考虑了电感,那么电容不是也考虑进去了吗?首先你要清楚串联谐振实际应用中会用到哪些设备:要谐振,当然要满足ωL=1/ωC,这其中我们可以改变三个参数来实现谐振,电容C 电感L 和频率ω,那么现实应用中被试品是电容,电容的大小是固定的,我们可以通过串并联电容改变电容的大小,但很麻烦;那么我们可以改变电感L,以前也使用过可调电感,但实际应用很不方便,体积也比较庞大,所以后来使用最多的也就是改变频率,也就是调频电源。
谐振回路中首先将电源接至可调电源,由可调电源输入电压到励磁变压器的二次端,由励磁变压器变压到一次高压再串联电感,将电感的另一头接到被试品上。
这里品质因数Q增大电压的倍数指的是实际加到被试品上的电压也就是电感另一头的电压除以励磁变的高压侧电压。
谐振变压器当然也会饱和,励磁变就是一个变压器,只要是个变压器它就存在铁芯饱和问题,我们实际应用中要计算一下这个变压器的额定电流,看看会不会超过实际容量。
如果超过了电感或者励磁变的额定电流就不光是饱和的问题了,就存在损坏试验设备的问题了。
如被试品的电容是0.24μF ,电感是500H ,励磁变的一次额定电流为2A,电感的额定电流也是2A,那么我们算一下,ωL=1/ωC,那么谐振频率就是91.28HZ,算一下,如果我在被试品上加17.4KV电压,那么一次电流就等于I=ωCU=2πf CU=2*3.14*91.28*0.24*0.000001*17400=2.39A这个时候电流就超过了试验设备的额定电流,这个时候我们可以算一下,再串联一个同样的电感,电感变为1000H,谐振频率变为64.55HZ,一次电流就变为1.69A就可以了。
lc振荡电路频率怎么计算_lc振荡电路频率计算(计算公式)lc振荡电路LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。
LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。
LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。
不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。
频率计算公式为f=1/[2(LC)],其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。
工作原理开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率f0。
并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。
设基极的瞬间电压极性为正。
经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离f0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率f0的振荡信号。
LC振荡电路物理模型的满足条件①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。
②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存。
rlc并联谐振电路的谐振频率公式RLC并联谐振电路是电路中常见的一种电路,其在信号处理、滤波等领域中有着广泛的应用。
在进行选型、设计和应用时,了解RLC并联谐振电路的谐振频率公式是非常重要的。
本文将为大家详细介绍RLC 并联谐振电路的谐振频率公式。
RLC并联谐振电路由电源、电感、电容和电阻四部分组成。
其中电感L和电容C串联在一起,构成振荡回路。
在特定的条件下,电路会对输入信号产生共振放大,从而起到滤波器的作用。
RLC并联谐振电路的谐振频率公式如下:
f0=1/2π√(LC)
公式中,f0表示电路的谐振频率,L表示电感的感值,C表示电容器的电容值,π为圆周率,√为平方根符号。
从公式来看,谐振频率与电感和电容的乘积成正比,与它们的平方根的倒数成反比。
换句话说,感值增大电容值减小,均会导致谐振频率变高。
反之则会使谐振频率趋向于降低。
了解RLC并联谐振电路的谐振频率公式,可以帮助我们更好地完成电路的选型和设计。
在实际应用中,根据电路的工作需求以及所需的频率范围,可以选择合适的电感和电容值,从而得到所需的谐振频率。
此外,在使用RLC并联谐振电路时,还需要注意避免电感和电容
的过度共振,以及防止过度放大和损耗。
因此,在电路的设计和应用
过程中,需要根据具体情况合理进行调整和优化,从而达到最佳效果。
总之,了解RLC并联谐振电路的谐振频率公式是电路设计和应用
中必不可少的基础知识。
通过深入理解公式原理,我们可以更好地掌
握电路的特性和工作原理,为电路的选型和设计提供更加有力的支持。
一、LC并联谐振回路2010-12-12一、LC并联谐振回路LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容构成。
常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。
它们的选频网络采用LC并联谐振回路。
1.LC并联谐振回路的等效阻抗图1 LC并联谐振回路LC并联回路如图1所示,其中R暗示回路的等效损耗电阻。
由图可知,LC并联谐振回路的等效阻抗为(1)考虑到通常有,所以⑵2.LC并联谐振回路具有以下特点由式⑵可知,LC并联谐振回路具有以下特点:(1)回路的谐振频率为或(3)⑵谐振时,回路的等效阻抗为纯电阻性质,并达到最大值,即(4)式中,称为回路品质因数,其值一般在几十至几百范围内。
由式⑵可画出回路的阻抗频率响应和相频响应如图2所示。
由图及式(4)可见,R值越小Q值越大,谐振时的阻抗值就越大,相角频率变化的程度越急剧,选频效果越好。
LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容构成。
常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。
它们的选频网络采用LC并联谐振回路。
(3)谐振时输入电流与回路电流之间的瓜葛由图1和式(4)有通常,所以。
可见谐振时,LC并联电路的回路电流或比输入电流大得多,即的影响可忽略。
这个结论对于分析LC正弦波振荡电路的相位瓜葛十分有用。
二、变压器反馈式LC振荡电路1.电路构成图1所示为变压器反馈式LC振荡电路。
由图可见,该电路包孕放大电路、反馈网络和选频网络等正弦波振荡电路的基本构成部分,其中LC并联电路作为BJT的集电极负载,起选频作用。
反馈是由变压器副边绕组N2为实现的。
下面首先用瞬时极性法来分析振荡回路的相位条件。
2.相位均衡条件判断相位均衡条件的判断参考动画。
图1变压器反馈式LC振荡电路3.起振与稳幅变压器反馈式LC正弦波振荡电路起振的幅值条件是环路增益大于1,只要变压器的变比和BJT选择适当,一般均可以满足幅值条件。
并联lc谐振回路q值计算
并联LC谐振回路是一种重要的电路,在电子电路中有广泛应用。
其主要特点是在一定的频率下,阻抗非常高,因此可以用于选择性地滤除某些频率的信号。
在实际应用中,需要计算并联LC谐振回路的Q值,以确定其选择性能。
Q值,即品质因数,是指谐振回路的能量储存能力与能量损失能力之比。
在并联LC谐振回路中,Q值可以通过以下公式计算:
Q = 1 / (R ×√(C/L))
其中,R为电路中的电阻,C为电容器的电容,L为电感器的电感。
对于已知电容和电感的情况下,可以通过调整电路中的电阻来改变Q值。
通常情况下,选择合适的电阻可以使Q值达到最大。
在实际应用中,我们需要根据具体的电路和使用要求来确定并联LC谐振回路的Q值。
通过合理地选择电容、电感和电阻等元件,可以实现较高的Q值,从而提高滤波性能和选择性能。
综上所述,计算并联LC谐振回路的Q值是很重要的,可以帮助我们更好地设计和优化电子电路,提高其性能和可靠性。
- 1 -。
LC并联谐振回路
图Z1005为一LC并联谐振回路,其中R为线圈的损耗电阻。
该回路的阻抗
该回路的谐振频率为
f0=
并联谐振回路的特点是,谐振时回路阻抗最大且为纯电阻,即Z0=R0=;谐振阻抗为感抗或容抗的Q倍,
即Z0=Qω0L=Q ∕ω0C。
式中Q=
一般Q远大于1。
当电流一定时,电感或电容两端的电压最大,若偏离谐振频率,回路阻抗及电压将明显减小。
1.回路电压的幅频特性
在谐振频率附近,ωL>>R,f+f0≈2f,式GS1007可整理成
Z=
回路电压
电压幅频特性:
其表达式和特性曲线与串联回路相同。
2.回路通频带和选择性
由GS1008式可求出并联回路的通频带
B=2Δf=
Q愈大,通频带愈窄;Q愈小,通频带愈宽。
与串联回路选择性分析一致,并联回路谐振曲线的矩形系数K r=9.96,
即选择性也较差,但这种电路结构简单,调试方便,常用于接收机的中频放大电路之中。