a1
a2
an
即 an1 q(q 0, n N * )
an
课件在线
4
判断下列数列是否为等比数列?若是,请求出公比q的值.
(1)4,-8,16,-32,……
(2) 1, 2, 4, 8, 12, 16, 20, ……
(3)数列 an 的通项为an= 1 3n
2
(4)数列 bn 中,bn=2bn-1 且 bn 0(n>1)
上一群孤立的点。
课件在线
9
20
18 (1)数列:2,4,8,16,…
16
●
14
12
an=2×2n-1=2n ,其图象应为
10
y=2x上一群孤立的点。
8
●
6
4
●
2
●
0 1 2 3 4 5 6 7 8 9 10
课件在线
10
与等差中项的概念类似,如果在a与b中间插 入一个数G,使a,G,b成等比数列,那么G 叫做a与b的等比中项。
故 { a n } 的通项公式为课件a在n线= -2 n
18
1、在等比数列中,填空:
(1)
1, 1 2
,1 4
, 1 8
,……
1 中第 15 项是 ___2_1_4____
(2) 2,2 2 ,4,4 2 ,…… 中第 __9__ 项是 32
(3) 第 7 项为
1 100
,公比为 1
10
,则第一项为
am an ap aq
特别地,若m+n=2p (m、n、p∈N*)时,有
am an ap2
课件在线
13
2.{an}是等比数列,公比为q,则{can}也是等比 数列,且公比为__q____.