高中数学复习知识点专题讲义56---解三角形的综合应用
- 格式:pptx
- 大小:1.15 MB
- 文档页数:26
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
正弦定理和余弦定理1.1.1正弦定理[新知初探] 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知asin A=bsin B,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断 [典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =c sin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形.3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc, 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sin π4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C.3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理(1)余弦定理的内容是什么?预习课本P5~6,思考并完成以下问题[新知初探]余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2D .7 3解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150° =147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30° 解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5.[答案] (1)60 (2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)上,余弦值所对角的值是唯一的),故用余弦定理求解较好.[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.已知三角形的三边解三角形[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状 [典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C .又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.正、余弦定理的综合应用题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . 证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c 2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边, ∴原式得证.题点三:正、余弦定理与三角函数、平面向量的交汇应用3.已知△ABC 的周长为4(2+1),角A ,B ,C 所对的边分别为a ,b ,c ,且有sin B +sin C =2sin A .(1)求边长a 的值;(2)若△ABC 的面积为S =3sin A ,求AB ·AC 的值. 解:(1)由正弦定理,得b +c =2a .① 又a +b +c =4(2+1),② 联立①②,解得a =4. (2)∵S △ABC =3sin A , ∴12bc sin A =3sin A ,即bc =6. 又∵b +c =2a =42, ∴由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =13.∴AB ·AC =bc cos A =2.正、余弦定理是解决三角形问题的两个重要工具,这类题目往往结合基本的三角恒等变换,同时注意三角形中的一些重要性质,如内角和为180°、大边对大角等.层级一 学业水平达标1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( ) A .-15 B .-16 C .-17 D .-18解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形 解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6解析:选B 因为(a 2+c 2-b 2)tan B =3ac , 所以2ac cos B tan B =3ac ,即sin B =32, 所以B =π3或B =2π3,故选 B.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0. 答案:07.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 答案:18.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:49.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 解:∵a >c >b ,∴A 为最大角. 由余弦定理的推论,得cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A <180°, ∴A =120°, ∴sin A =sin 120°=32. 由正弦定理,得sin C =c sin Aa =5×327=5314. ∴最大角A 为120°,sin C =5314. 层级二 应试能力达标1.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .3.在△ABC 中,cos 2B 2=a +c 2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:选B ∵cos 2B 2=a +c2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c =( )A.12B.32C .-12D .-32解析:选A 由余弦定理得cos A =b 2+c 2-a 22bc ,又b 2+c 2+bc -a 2=0,则cos A =-12,又0°<A <180°,则A =120°,有B =60°-C ,所以a sin (30°-C )b -c =sin A sin (30°-C )sin (60°-C )-sin C=34cos C -34 sin C 32cos C -32sin C =12.故选A. 5.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3. 答案: 36.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为________.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.答案:357.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2.8.如图,D 是直角三角形△ABC 斜边BC 上一点,AC =3DC . (1)若∠DAC =30°,求B ;(2)若BD =2DC ,且AD =22,求DC . 解:(1)在△ADC 中,根据正弦定理, 有AC sin ∠ADC =DCsin ∠DAC,∵AC =3DC ,所以sin ∠ADC =3sin ∠DAC =32, 又∠ADC =∠B +∠BAD =∠B +60°>60°, ∴∠ADC =120°,∴∠C =180°-120°-30°=30°,∴∠B =60°. (2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,∴sin B=ACBC =33,cos B=63,AB=6x,在△ABD中,AD2=AB2+BD2-2AB·BD·cos B,即(22)2=6x2+4x2-2×6x×2x×63=2x2,得x=2.故DC=2.应用举例第一课时解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为() A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例]如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A,B两点间的距离为2007 m.题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=AD sin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定。
目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。
三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。
02证明方法通过平行线的性质或者撕拼法等方法进行证明。
三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。
三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。
三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。
正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。
利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。
已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。
解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。
解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。
解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。
解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。
余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。
几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。
第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。
333绵阳市开元中学高 2014 级高三一轮复习③ tan (A + B )= - tan C ;④sinA + BC = cos , ⑤cosA +B = sinC 《解三角形》知识点、题型与方法归纳制卷:王小凤学生姓名:7.实际问题中的常用角 (1)仰角和俯角2 22 2 一、知识点归纳(★☆注重细节,熟记考点☆★)1. 正弦定理及其变形在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)asin A = b sin B = c sin C= 2R (R 为三角形外接圆半径) 变式:(1) a = 2R sin A , b = 2R sin B , c = 2R sin C (边化角公式)(2)sin A = a ,sin B =2Rb , sin C =c 2R 2R (角化边公式) (2) 方位角(3)a : b : c = sin A : sin B : sin C(4) a = sin A , a = sin A , b =sin B b sin B c sin C c sin C2. 正弦定理适用情况: (1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况). 3. 余弦定理及其推论从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为 α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
仰角与俯角是相对于水平线而言的, 而方位角是相对于正北方向而言的。
(3) 方向角:相对于某一正方向的水平角(如图③)如: ①北偏东 即由指北方向顺时针旋转到达目标方向;a 2 =b 2 +c 2 - 2bc cos Acos A =b 2 +c 2 - a 22bc②“东北方向”表示北偏东(或东偏北) 45︒ .(4) 坡度:坡面与水平面所成的二面角的度数(如图④,角 θ 为坡角)b 2 = a 2 +c 2 - 2ac cos B c 2 = a 2 + b 2 - 2ab cos Ccos B =a 2 + c 2 -b 22ac a 2 + b 2 - c 2二、题型示例(★☆注重基础,熟记方法☆★)4. 余弦定理适用情况:cos C =2ab1.在V ABC 中,若∠A =60°,∠B =45°,BC =3 2,则 AC = ()(1)已知两边及夹角;(2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5. 常用的三角形面积公式A.4B .2C .D . 2 2.在V ABC 中, a 2 = b 2 + c 2 + 3bc ,则∠A 等于()A .60°B .45°C .120°D .150°(1) S ∆ABC = 1 ⨯ 底⨯高;2 (2) 1 1 1 abcS = ab sin C = ac sin B = bc sin A = (R 为∆A 接BC 圆半径 )(两边夹一角);2 2 2 4R6. 三角形中常用结论(1) a + b > c , b + c > a , a + c > b (即两边之和大于第三边,两边之差小于第三边) (2) 在∆A ,BC 即大边A 对> 大B ⇔角,a >大b 角⇔对s 大in 边A >)sin B ( (3) 在∆ABC 中, A + B + C = ,所以①sin (A + B )= sin C ;② cos (A + B )= -cos C ;3. 设V ABC 的内角 A , B , C 所对的边分别为a , b , c , 若b cos C + c cos B = a sin A , 则V ABC 的形状为( )A. 锐角三角形B .直角三角形C .钝角三角形D .不确定4. 若△ABC 的三个内角满足sin A : sin B : sin C = 3 : 5 : 7 ,则△ABC ()3考点一:正弦定理、余弦定理的简单应用 考点二:利用正弦定理、余弦定理判断三角形的形状3 3 33 3 14 15 3 14 15考点四:利用正余弦定理求角2 考点三:利用正余弦定理求三角形的面积A. 一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形∴∠ADB =180°-(45°+30°)=105°.DBAB在△DAB 中,由正弦定理,得sin ∠DAB =sin ∠ADB ,cos A bAB ·sin ∠DAB 5(3+\r(3))·sin 45°5. 在∆ABC 中,若cos B =a ,则△ABC 是()A. 等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形6. 在∆ABC 中, AB =, AC = 1 , ∠A = 30︒ ,则∆ABC 面积为() ∴DB =sin ∠ADB = sin 105°5(3+\r(3))·sin 45°=sin 45°cos 60°+cos 45°sin 60°=2=10 3(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =20 3(海里), 在△DBC 中,由余弦定理,得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBCA.B.C.或 D .或 12424 2=300+1 200-2×10 3×20 3×2=900, 7. 已知∆ABC 的三边长a = 3, b = 5, c = 6 ,则∆ABC 的面积为() ∴CD =30(海里),A .B . 2C .D . 2 30∴需要的时间 t =30=1(小时).故救援船到达 D 点需要 1 小时.8. 在锐角中∆ABC ,角 A , B 所对的边长分别为a , b .若2a sin B = 3b ,则角等于 ()三、高考真题赏析A.B.C.D.1.(2016 年ft 东)在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,已知tan A tan B126 4 3 2(tan A + tan B ) = + cos B .cos A9.在△ABC 中,若 a =18,b =24,A =45°,则此三角形有 ( )(Ⅰ)证明:a +b =2c ;(Ⅱ)求 cos C 的最小值.A .无解B .两解C .一解D .解的个数不确定1【解析】(Ⅰ)由2(tanA + tanB) = tanA tanB+ 得10. 在∆ABC ,内角 A , B , C 所对的边长分别为a , b , c . a sin B cos C + c sin B cos A = ∠B = ()b , 且a > b ,则2 2 ⨯ sinC =sinA cosB+ sinB cosA, A.B.C. 2D. 5cosAcosB cosAcosB cosAcosB 2sin C = sin B + sin C a + b = 2c633 6所以,由正弦定理,得.a 2 +b 2 -c 2 (a + b )2 - 2ab - c32c 3c 23 1(Ⅱ)由cos C == = - 1 ≥ - 1 = - 1 = .11. 如图:A ,B 是海面上位于东西方向相距5(3 + 3 )海里的两个观测点,现位于 A 点北偏东45︒ ,B 点2ab2ab2ab 2( a + b )2 2 2 2北偏西60︒ 的 D 点有一艘轮船发出求救信号,位于 B 点南偏西60︒ 且与 B 点相距20 船立即前往营救,其航行速度为每小时 30 海里,该救援船到达 D 点需要多长时间?解 由题意知 AB =5(3+ 3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,1海里的 C 点的救援所以cos C 的最小值为 .22.(2016 年四川)在△ABC 中,角 A ,B ,C 所对的边分别是 a ,b ,c ,且cos A + cos B = sin C. a b c3 3 5 3(\r(3)+1)3+1 考点五:正余弦定理实际应用问题(I)证明:sin A sin B sin C ;3 3 Ctan tan tan 5(II )若b 2 + c 2 - a 2 = 6bc ,求tan B .5∆ABC 中, D 是 BC 上的点, AD 平分∠BAC , ∆ABD 面积是∆ADC 面积的 2 倍.a =b =c (Ⅰ) 求sin ∠B ;(Ⅱ)若 AD = 1 , DC =2 ,求 BD 和 AC 的长.【解析】(I )证明:由正弦定理 sin A sin Bsin C 可知sin ∠C2cos A + cos B = sin C = 1原式可以化解为 sin A sin B sin C∵ A 和 B 为三角形s i 内n A 角sin , B ∴sin A sin B ≠ 0 则,两边同时乘以,可得sin B cos A + sin A cos B = sin A sin B 由和角公式可知, sin B cos A + sin A cos B = sin (A + B )= sin (- C )= sin C原式得证。
专题 解三角形及其应用考点精要1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.热点分析重点为正、余弦定理及三角形的面积公式的考查;题型方面,客观题以考查用正、余弦定理解三角形为主,解答题主要与三角函数的一些公式相结合实现边角互化或用以解决实际问题;考查转化与化归的数学思想以及从实际问题中提炼数学问题的能力.知识梳理1.内角和定理: ππsin()sin cos()cos A B C A B C A B C A B C ++=⇔+=-⇔+=⇔+=-2.正弦定理:2sin sin sin a b c R A B C ===;sin sin sin ,,sin sin sin a A a A b Bb Bc C c C===; 2sin ,2sin ,2sin a R A b R B c R C ===.(其中R 是三角形ABC 外接圆的半径)3.余弦定理:2222222222cos ,2cos ,2cos ,a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos ,cos ,cos 222b c a a c b a b c A B C bc ac ab+-+-+-===. 4.面积公式:111111sin sin sin 222222a b c S ah bh ch ab C bc A ac B ======例题精讲;例 1 在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A=A 030B 060C 0120D 0150例2 .在ABC ∆中,a=15,b=10,A=60°,则cos B =A B C - D例3 在ABC ∆中。
若1b =,c =23c π∠=,则a= 。
例4 在ABC ∆中,A C AC BC sin 2sin ,3,5===(Ⅰ)求AB 的值。
解三角形及其应用解三角形及其应用正余弦定理及应用正余弦定理与变形正弦定理aAsin=bBsin=cCsin=2R余弦定理a2=b2+c2-2bc Acosb2=a2+c2-2ac Acosc2=a2+b2-2ab Acos解三角形中的常用结论内角和定理A+B+C=π三角关系A+Bsin=CsinA+Bcos=-CcosA+B2sin=C2cosA+B2cos=C2sin射影定理a=b Ccos+c Bcosb=a Ccos+c Acosc=a Bcos+b Acos大角对大边A>B⇔a>b⇔Asin>Bsin 三角形常用面积公式S=12ah=12ab Csin=12ac Bsin=12bc Asin=12a+b+cr解三角形的实际应用位角与俯角方位角方向角知识点1:正、余弦定理及应用1.正、余弦定理与变形定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)a∶b∶c=sin A∶sin B∶sin C;(3)a+b+csin A+sin B+sin C=asin A=2Rcos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab【注意】若已知两边和其中一边的对角,解三角形时,可用正弦定理.在根据另一边所对角的正弦值确定角的值时,要注意避免增根或漏解,常用的基本方法就是注意结合“大边对大角,大角对大边”及三角形内角和定理去考虑问题.2.解三角形中的常用结论(1)三角形内角和定理:在△ABC中,A+B+C=π;变形:A+B2=π2-C2.(2)三角形中的三角函数关系①sin(A+B)=sin C;②cos(A+B)=-cos C;③sin A+B2=cos C2;④cosA+B2=sin C2.(3)三角形中的射影定理:在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.(4)三角形中的大角对大边:在△ABC中,A>B⇔a>b⇔sin A>sin B.3.三角形常用面积公式(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A;(3)S=12r(a+b+c)(r为内切圆半径).知识点2:解三角形的实际应用名称意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角铅垂线目标视线水平视线目标视线仰角俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是0°≤θ<360°O东北135°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)例:(1)北偏东α:(2)南偏西α:东北α东北α一、正(余)弦定理解三角形解三角时,正余弦定理的选择:(1)已知两角及一边,求其余的边或角,利用正弦定理;(2)已知两边及其一边的对角,求另一边所对的角,利用正弦定理;(3)已知两边及其夹角,求第三边,利用余弦定理;(4)已知三边求角或角的余弦值,利用余弦定理的推论;(5)已知两边及其一边的对角,求另一边,利用余弦定理;1.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=2,b=4,cos C=14,则c=()A.2B.4C.16D.262.在△ABC中,A=60°,AC=4,BC=23,则角B的值为()A.45°B.45°或135°C.90°D.135°3.△ABC中,角A,B,C所对的边分别为a,b,c,已知b=2,B=π6,cos A=-35,则a=()A.252 B.852 C.8156 D.21564.△ABC的内角A,B,C所对边分别为a,b,c,若a2+b2-c2=-ab,则角C的大小()A.π6B.π3C.π2D.2π3二、边角互化的应用边化角是正弦定理齐次比例关系非常重要的应用,其主要特点是将混有边角关系的条件问题转化为三角恒等变换问题,并从角的角度来审视三角形的特征,要熟练掌握边化角的三角形考题的特征,一般来说,当条件中含有特殊数,如3(往往和特殊角有关)或者齐次特征明显时,常进行边化角处理对于正弦定理与三角恒等变换的综合问题,大多是基于三角形内角和定理展开的,故一般有两种类型:一是利用相应半角的互余关系、角的互补关系研究三角恒等变换,进而达到减元的目的,也就可以盯着目标进行三角恒等变换:二是利用正弦定理求得相应的角或者寻找相应的边角关系,进而运用三角恒等变换转化为一个角的三角函数问题.5.在△ABC中,角A,B,C所对的边分别为a,b,c,且2a cos B=c-2a,b=2a,则()A.2a=3cB.3a=2cC.b=2cD.2b=c6.已知△ABC的内角A,B,C的对边分别为a,b,c,且cb +2bc=3cos A,1tan A+1tan C=2tan B,则sin B=()A.64B.105C.156D.2177.在△ABC中,角A,B,C所对的边分别为a,b,c,已知c sin C-a sin A=4b sin B,且cos C=-15,则sin Asin B=()A.215B.265C.5612D.1528.设△ABC的内角A,B,C的对边分别为a,b,c,若△ABC的周长为a sin Bsin A+sin B-sin C,则()A.C=2π3B.B=2π3C.C=π3D.B=π3三、判断三角形解的个数1、从代数上来说,可由“大边对大角”来判断;2、从几何上来说,已知两边及一边对角,解三角形(三角形多解问题)在△ABC中,已知a,b和A时,解的情况如下:当A为锐角时:AH C a b ca <CH =b Asin 无解A H C abc a =CH =b A sin 仅有一个解AHC ab cCH =b A sin <a <b有两个解AHC ab ca ≥b 仅有一个解当A 为钝角时ABC ab A B Cab仅有一个解仅有一个解9.根据下列情况,判断三角形解的情况,其中有唯一解的是()A.a =20,b =11,B =30°B.a =6,c =4,C =60°C.b =18,c =20,B =120°D.a =30,b =25,A =150°10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列判断正确的是()A.B =30°,c =4,b =5,有两解B.B =30°,c =4,b =3.9,有一解C.B =30°,c =4,b =3,有一解D.B =30°,c =4,b =1,无解11.在△ABC 中,a =x ,b =2,B =45°,若满足条件的△ABC 有且仅有一个,则x 的取值范围是()A.0,2 ∪22B.2,22C.0,2 ∪22D.0,2212.在△ABC 中,∠A =30°,AC =23,满足此条件△ABC 有两解,则BC 边长度的取值范围为()A.(23,4)B.(3,23)C.(23,+∞)D.(3,23)四、判断三角形的形状判断三角形形状的两种途径1、角化边:利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;2、边化角:通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.13.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若b cos A +a cos B =b ,则△ABC 的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰或直角三角形14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若满足2a cos B =c ,则该三角形为()A.直角三角形B.等腰三角形C.等边三角形D.不能确定15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2A 2=c -b2c ,则△ABC 的形状为()A.正三角形B.直角三角形C.等腰三角形D.钝角三角形16.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,下列四个命题中正确的是()A.若b cos C +c cos B =b ,则△ABC 是等腰三角形B.若a sin A +b sin B >c sin C ,则△ABC 为锐角三角形C.若a cos A =b cos B =ccos C ,则△ABC 一定是等边三角形D.若a cos A =b cos B ,则△ABC 一定是等腰三角形五、三角形的周长与面积1、三角形面积公式的使用原则:对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是使用哪一个角就使用哪一个公式;2、与面积有关的问题:一般要用到正弦定理和余弦定理进行边角互化;3、三角形的周长问题:一般是利用余弦定理和公式a2+b2=(a+b)2-2ab将问题转化为求两边之和的问题.17.在△ABC中,角A,B,C的对边分别是a,b,c,且三边满足a+b+ca-b+c=42,B=π4,则△ABC的面积为()A.2-2B.4-22C.2+2D.4+2218.在△ABC中,已知b=2,B=30°,sin A=3sin C,则△ABC的面积为()A.4B.3C.2D.119.已知a,b,c分别是△ABC的内角A,B,C的对边,且ab =cos A2-cos B.(1)求ac;(2)若cos C=14,△ABC的面积为15,求△ABC的周长.20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知23ac sin B=a2-b2-c2(1)求A;(2)若a=7,且△ABC的周长为1+3+7,求△ABC的面积六、三角形的外接圆问题利用正弦定理:asin A =bsin B=csin C=2R可求解三角形外接圆的半径.若要求三角形外接圆半径的范围,一般将R用含角的式子表示,再通过三角函数的范围来求半径的范围.21.在△ABC中,已知a=42,b=1,C=π4,则△ABC的外接圆的直径为()A.43B.5C.52D.6222.在△ABC中,角A、B、C所对的边分别为a、b、c,且c cos B+b cos C=a2,若B+C=2A,则△ABC外接圆半径为.23.在△ABC中,角A,B,C所对的边分别为a,b,c,c cos A=(2b-a)cos C.若A=π12,点D在边AB上,AD=BC =1,则△BCD的外接圆的面积是()A.2+33π B.4+33π C.6+33π D.8+33π24.现给出两个条件:①2b sin A =a tan B ,②a sin A -sin C =b sin B -c sin C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选则按第一个解答计分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若.(1)求B ;(2)若△ABC 的面积为43,求△ABC 外接圆半径的最小值.七、三角形的中线问题1、中线长定理:在ΔABC 中,AD 是边BC 上的中线,则AB 2+AC 2=2(BD 2+AD 2).2、中线向量化:由2AD =AB +AC (核心技巧)得AD 2=14(b 2+c 2+2bc cos A )(结论).3、邻角互补应用:核心技巧:∠ADB +∠ADC =π⇒cos ∠ADB +cos ∠ADC =0在ΔADB 中有:cos ∠ADB =DA 2+DB 2-AB 22DA ×DB ;在ΔADC 中有:cos ∠ADC =DA 2+DC 2-AC 22DA ×DC.25.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =8,b =9,c =7.则BC 边上的中线AM 的长为.26.如图,在△ABC 中,已知AB =4,AC =10,∠BAC =60°,M ,N 分别为BC ,AC 边上的中点,AM ,BN 相交于点P .ABCMNP(1)求BC ;(2)求cos ∠MPN 的值.27.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin C =3b sin A ,cos A =13.(1)证明:△ABC 为等腰三角形.(2)若D 是边BC 的中点,AD =34,求△ABC 的面积.28.在△ABC中,角A,B,C所对的边分别为a,b,c,27b cos A sin B+a cos2B-a=0.(1)求tan A的值;(2)若a=2,点M是AB的中点,且CM=1,求△ABC的面积.八、三角形的角平分线问题如图,在ΔABC中,AD平分∠BAC,角A,B,C所对的边分别为a,b,c,(1)利用角度的倍数关系:∠BAC=2∠BAD=2∠CAD(2)内角平分线定理:AD为ΔABC的内角∠BAC的平分线,则ABAC =BDDC.说明:三角形内角平分线性质定理将分对边所成的线段比转化为对应的两边之比,再结合抓星结构,就可以转化为向量了,一般的,涉及到三角形中“定比”类问题,运用向量知识解决起来都较为简捷。